Esempio n. 1
0
    def partition(self, force=False):
        '''
        Calculate the best nodal partition of G using the louvain
        algorithm as implemented in :func:`community.best_partition`.
        If desired, the node-wise partition can be accessed and manipulated by
        the nodal attribute "module" and the module-wise partition as
        ``G.graph["partition"]``

        Parameters
        ----------
        force : bool
            pass True to recalculate when a partition exists

        Returns
        -------
        (dict, dict)
            Two dictionaries represent the resulting nodal partition of G. The
            first maps nodes to modules and the second maps modules to nodes.

        See Also
        --------
        :func:`BrainNetwork.calc_nodal_partition`
        '''
        if 'partition' not in self.graph:
            nodal_partition, module_partition = calc_nodal_partition(self)
            nx.set_node_attributes(self, nodal_partition, name='module')
            self.graph['partition'] = module_partition
        return nx.get_node_attributes(self,
                                      name='module'), self.graph['partition']
Esempio n. 2
0
    def setUpClass(self):
        self.karate = nx.karate_club_graph()

        self.totalpart = {x: [x] for x in list(self.karate.nodes)}
        self.triviallpart = {0: [x for x in list(self.karate.nodes)]}
        self.nonpart = {0: [0]}
        n, m = gm.calc_nodal_partition(self.karate)
        self.bestpart_n = n
        self.bestpart_m = m

        self.nonbinary = nx.karate_club_graph()
        nx.set_edge_attributes(self.nonbinary, '0.5', name='weight')
Esempio n. 3
0
 def throw_out_nonbinary_graph(self):
     with self.assertRaises(Exception):
         gm.calc_nodal_partition(self.nonbinary)