Esempio n. 1
0
def generate_test_dataset():
    n = 100
    ar = np.r_[1, 0.9]
    ma = np.array([1])
    arma_process = ArmaProcess(ar, ma)
    x1 = 8 + arma_process.generate_sample(nsample=n)
    x2 = 12 + arma_process.generate_sample(nsample=n)
    x3 = 3 + arma_process.generate_sample(nsample=n)
    y = 1.2 * x1 + 4.0 * x2 + 0.0 * x3 + np.random.normal(size=n)
    t = range(1, n + 1)
    y[70:] += 5

    return pd.DataFrame({"y": y, "x1": x1, "x2": x2, "x3": x3, "t": t})
Esempio n. 2
0
def _gen_ar2(do_fit=True):
    phi = np.r_[0.9, 0.05]
    ar2 = ArmaProcess(ar=np.r_[1, -phi], nobs=500)
    y = ar2.generate_sample()
    assert ar2.isstationary and ar2.isinvertible
    fit = sm.tsa.ARMA(y, (2, 0)).fit() if do_fit else None
    return y, fit
Esempio n. 3
0
def arima_process(size, ar_coefs, ma_coefs, d=0):
    """Simulate a series from an arima model."""
    arma = ArmaProcess(ar_coefs, ma_coefs)
    arma_series = arma.generate_sample(size + d)
    # Integrate d times.
    for i in six.moves.range(d):
        arma_series = np.cumsum(arma_series)
    return pd.Series(arma_series)
Esempio n. 4
0
def generate_noise(timepoints=200, scale=0.01):
    np.random.seed(12345)
    # make the noise component
    rho = 0.12
    ar = np.array([1, -rho])  # statmodels says to invert rho
    ap = ArmaProcess(ar)
    err = ap.generate_sample(timepoints, scale=scale, axis=0)

    return err
Esempio n. 5
0
def simulate_ar1_time_series():
    # Plot 1:  AR parameter = +0.9
    plt.subplot(2, 1, 1)
    ar1 = np.array([1, -0.9])
    ma1 = np.array([1])
    AR_object1 = ArmaProcess(ar1, ma1)
    simulated_data_1 = AR_object1.generate_sample(nsample=1000)
    plt.plot(simulated_data_1)

    # Plot 1:  AR parameter = -0.9
    plt.subplot(2, 1, 2)
    ar2 = np.array([1, 0.9])
    ma2 = np.array([1])
    AR_object2 = ArmaProcess(ar2, ma2)
    simulated_data_2 = AR_object2.generate_sample(nsample=1000)
    plt.plot(simulated_data_2)

    plt.show()
Esempio n. 6
0
def test_default_causal_cto_no_signal():
    np.random.seed(1)
    ar = np.r_[1, 0.9]
    ma = np.array([1])
    arma_process = ArmaProcess(ar, ma)
    X = 100 + arma_process.generate_sample(nsample=100)
    y = 1.2 * X + np.random.normal(size=(100))
    data = pd.DataFrame({'y': y, 'X': X}, columns=['y', 'X'])
    ci = CausalImpact(data, [0, 69], [70, 99])
    assert ci.p_value > 0.05
Esempio n. 7
0
def sample_MA_process_ARMA(mu, theta, realisations):
    np.random.seed(1234)
    dist = lambda size: np.random.normal(0, 1, size)
    arparams = np.array([])
    maparams = np.array(theta)
    # include zero-th lag
    arparams = np.r_[1, arparams]
    maparams = np.r_[1, maparams]
    arma_t = ArmaProcess(arparams, maparams)
    return arma_t.generate_sample(nsample=realisations, distrvs=dist)
Esempio n. 8
0
def ar_example1():
    from statsmodels.tsa.arima_process import ArmaProcess

    # Plot 1: AR parameter = +0.9
    plt.subplot(2, 1, 1)
    ar1 = np.array([1, -0.9])
    ma1 = np.array([1])
    AR_object1 = ArmaProcess(ar1, ma1)
    simulated_data_1 = AR_object1.generate_sample(nsample=1000)
    plt.plot(simulated_data_1)

    # Plot 2: AR parameter = -0.9
    plt.subplot(2, 1, 2)
    ar2 = np.array([1, 0.9])
    ma2 = np.array([1])
    AR_object2 = ArmaProcess(ar2, ma2)
    simulated_data_2 = AR_object2.generate_sample(nsample=1000)
    plt.plot(simulated_data_2)
    plt.show()
Esempio n. 9
0
def sample_random_walk_arma(X0, realisations):
    np.random.seed(1234)
    # ARMA(1,1)
    arparams = np.array([1])
    maparams = np.array([0])
    # include zero-th lag
    arparams = np.r_[1, -arparams]
    maparams = np.r_[1, maparams]
    arma_t = ArmaProcess(arparams, maparams)
    return arma_t.generate_sample(nsample=realisations)
Esempio n. 10
0
def test_lower_upper_percentile():
    np.random.seed(1)
    ar = np.r_[1, 0.9]
    ma = np.array([1])
    arma_process = ArmaProcess(ar, ma)
    X = 100 + arma_process.generate_sample(nsample=100)
    y = 1.2 * X + np.random.normal(size=(100))
    data = pd.DataFrame({'y': y, 'X': X}, columns=['y', 'X'])
    ci = CausalImpact(data, [0, 69], [70, 99])
    ci.lower_upper_percentile == [2.5, 97.5]
Esempio n. 11
0
def data():
    ar = np.r_[1, 0.9]
    ma = np.array([1])
    arma_process = ArmaProcess(ar, ma)

    X = 1 + arma_process.generate_sample(nsample=100)
    X = X.reshape(-1, 1)
    y = 1.2 * X + np.random.normal(size=(100, 1))
    data = np.concatenate((y, X), axis=1)
    data = pd.DataFrame(data)
    return data
Esempio n. 12
0
def get_ts(N, p=0, q=0):
    """
    p is the number of poles
    q is the number of nills

    Generates stable processes.
    """

    model = ArmaProcess(poles(p // 2), poles(q // 2))

    return model, model.generate_sample(N)
def estimate_order_of_model_pacf():
    # Simulate AR(1) with phi=+0.6
    ma = np.array([1])
    ar = np.array([1, -0.6])
    AR_object = ArmaProcess(ar, ma)
    simulated_data_1 = AR_object.generate_sample(nsample=5000)

    # Plot PACF for AR(1)
    plot_pacf(simulated_data_1, lags=20)
    plt.show()

    # Simulate AR(2) with phi1=+0.6, phi2=+0.3
    ma = np.array([1])
    ar = np.array([1, -0.6, -0.3])
    AR_object = ArmaProcess(ar, ma)
    simulated_data_2 = AR_object.generate_sample(nsample=5000)

    # Plot PACF for AR(2)
    plot_pacf(simulated_data_2, lags=20)
    plt.show()
Esempio n. 14
0
def test_causal_cto_w_positive_signal_no_standardization():
    np.random.seed(1)
    ar = np.r_[1, 0.9]
    ma = np.array([1])
    arma_process = ArmaProcess(ar, ma)
    X = 100 + arma_process.generate_sample(nsample=100)
    y = 1.2 * X + np.random.normal(size=(100))
    y[70:] += 1
    data = pd.DataFrame({'y': y, 'X': X}, columns=['y', 'X'])
    ci = CausalImpact(data, [0, 69], [70, 99], standardize=False)
    assert ci.p_value < 0.05
Esempio n. 15
0
def simulate_ar2_time_series():
    fig, axes = plt.subplots(3, 1)

    ar = np.array([2, -0.9, -0.8])
    ma = np.array([1])
    arma = ArmaProcess(ar, ma)
    simulated = arma.generate_sample(nsample=1000)
    axes[0].plot(simulated)
    axes[0].set_title("AR(2, [0.9, 0.8]), MA(1, 0)")
    plot_acf(simulated, ax=axes[1])
    plot_pacf(simulated, ax=axes[2])
    plt.show()
Esempio n. 16
0
def equivalence_of_ar1_and_ma_infinity(intraday):
    # Build a list MA parameters
    ma = [0.8**i for i in range(30)]

    # Simulate the MA(30) model
    ar = np.array([1])
    AR_object = ArmaProcess(ar, ma)
    simulated_data = AR_object.generate_sample(nsample=5000)

    # Plot the ACF
    plot_acf(simulated_data, lags=30)
    plt.show()
Esempio n. 17
0
    def test_from_model(self):
        process = ArmaProcess([1, -.8], [1, .3], 1000)
        t = 1000
        rs = np.random.RandomState(12345)
        y = process.generate_sample(t, burnin=100, distrvs=rs.standard_normal)
        res = ARMA(y, (1, 1)).fit(disp=False)
        process_model = ArmaProcess.from_estimation(res)
        process_coef = ArmaProcess.from_coeffs(res.arparams, res.maparams, t)

        assert_equal(process_model.arcoefs, process_coef.arcoefs)
        assert_equal(process_model.macoefs, process_coef.macoefs)
        assert_equal(process_model.nobs, process_coef.nobs)
        assert_equal(process_model.isinvertible, process_coef.isinvertible)
        assert_equal(process_model.isstationary, process_coef.isstationary)
Esempio n. 18
0
    def test_from_model(self):
        process = ArmaProcess([1, -.8], [1, .3], 1000)
        t = 1000
        rs = np.random.RandomState(12345)
        y = process.generate_sample(t, burnin=100, distrvs=rs.standard_normal)
        res = ARMA(y, (1, 1)).fit(disp=False)
        process_model = ArmaProcess.from_estimation(res)
        process_coef = ArmaProcess.from_coeffs(res.arparams, res.maparams, t)

        assert_equal(process_model.arcoefs, process_coef.arcoefs)
        assert_equal(process_model.macoefs, process_coef.macoefs)
        assert_equal(process_model.nobs, process_coef.nobs)
        assert_equal(process_model.isinvertible, process_coef.isinvertible)
        assert_equal(process_model.isstationary, process_coef.isstationary)
Esempio n. 19
0
def do_one_res_bootstrap(n, slope_hat, residuals):
    rand_res = lambda size: np.random.choice(residuals, size)
    ar = np.array([1, -slope_hat])
    ma = np.array([1])
    AR_res = ArmaProcess(ar,ma)
    data = AR_res.generate_sample(nsample = n + 1, scale = 1, distrvs = rand_res)

    x = data[0:(n-1)]
    y = data[1:n]

    slope = solve(x, y)
    stderr = calc_StdErr(slope, x, y)
    T = (slope - slope_hat) / stderr

    return T
Esempio n. 20
0
def test_simulated_y_default_model():
    np.random.seed(1)
    ar = np.r_[1, 0.9]
    ma = np.array([1])
    arma_process = ArmaProcess(ar, ma)
    X = 100 + arma_process.generate_sample(nsample=100)
    y = 1.2 * X + np.random.normal(size=(100))
    data = pd.DataFrame({'y': y, 'X': X}, columns=['y', 'X'])
    ci = CausalImpact(data, [0, 69], [70, 99])

    assert ci.simulated_y.shape == (1000, 30)

    lower, upper = np.percentile(ci.simulated_y.mean(axis=1), [5, 95])
    assert lower > 119
    assert upper < 121
Esempio n. 21
0
    def mc_ar1_ARMA(self, phi, std, n, N=1000):
        """ Monte-Carlo AR(1) processes

        input:
        phi .. (estimated) lag-1 autocorrelation
        std .. (estimated) standard deviation of noise
        n   .. length of original time series
        N   .. number of MC simulations 
        """
        AR_object = ArmaProcess(np.array([1, -phi]), np.array([1]), nobs=n)
        mc = AR_object.generate_sample(nsample=(N, n),
                                       scale=std,
                                       axis=1,
                                       burnin=1000)
        return mc
Esempio n. 22
0
def compare_the_acf_for_several_ar_time_series():
    ar_parameters = [0.9, -0.9, 0.3]
    fig, axes = plt.subplots(3, 1, sharex=True)

    for i, p in enumerate(ar_parameters):
        ar = np.array([1, -p])
        ma = np.array([1])
        ar_object = ArmaProcess(ar, ma)
        simulated_data = ar_object.generate_sample(nsample=1000)

        plot_acf(simulated_data, ax=axes[i])
        axes[i].set_title("AR parameter φ = %4.2f" % (p))

    fig.suptitle("Comparison of ACF")
    plt.show()
Esempio n. 23
0
def make_trend(series_len,
               method='rw',
               arma=[.25, .6],
               rw_loc=0.0,
               rw_scale=0.1,
               seed=1):
    """ Module to generate time-series trend with different methods
    Parameters
    ----------
    series_len: int
        Total length of series
    method: str ['arma', 'rw']
        In case of `'rw'`, a simple random walk process will be used. For `'arma'`, we will use `statsmodels.api` to
        simulate a simple ARMA(1, 1) process
    arma: list
        List [arparams, maparams] of size 2 where used for arma(1) generating process
    rw_loc: float
        Location parameter of random walk generated by `np.random.normal()`
    rw_scale: float
        Scale parameter of random walk generated by `np.random.normal()`
    seed: int
        Seed passed into `np.random.default_rng()`
    Returns
    -------
    np.array-llike
        Simulated trend with length equals `series_len`

    Notes
    -----
        1. ARMA process: https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_process.ArmaProcess.html
    """
    # make trend
    if method == "rw":
        rw = np.random.default_rng(seed).normal(rw_loc, rw_scale, series_len)
        trend = np.cumsum(rw)
    elif method == "arma":
        arparams = np.array([arma[0]])
        maparams = np.array([arma[1]])
        # add zero-lag and negate
        ar = np.r_[1, -arparams]
        # add zero-lag
        ma = np.r_[1, maparams]
        arma_process = ArmaProcess(ar, ma)
        trend = arma_process.generate_sample(series_len)
    else:
        raise IllegalArgument("Invalid trend method.")

    return trend
def estimating_an_ar_model():
    ar = np.array([1, -0.9])
    ma = np.array([1])
    ar_process = ArmaProcess(ar, ma)
    simulated_data = ar_process.generate_sample(nsample=1000)

    # Fit an AR(1) model to the first simulated data
    mod = ARMA(simulated_data, order=(1, 0))
    res = mod.fit()

    # Print out summary information on the fit
    print(res.summary())

    # Print out the estimate for the constant and for phi
    print("When the true phi=0.9, the estimate of phi (and the constant) are:")
    print(res.params)

    return simulated_data, res
Esempio n. 25
0
def generate_signal(go_onset=2, ss_onset=12, fs_onset=22,
                    go_pwr=1, ss_pwr=2, fs_pwr=3, noise=0,
                    design_resolution=0.1, duration=40,
                    stim_duration=1, tr=1):
    rho = 0.12
    cond_order = [0, 1, 2]
    betas = np.array([go_pwr, ss_pwr, fs_pwr])
    onsets = np.array([go_onset, ss_onset, fs_onset])
    onsets_res = onsets / design_resolution
    onsets_res = onsets_res.astype(int)
    duration_res = int(duration / design_resolution)
    stim_duration_res = int(stim_duration / design_resolution)
    sampling_rate = int(tr / design_resolution)

    X = np.zeros((duration_res, onsets.shape[0]))
    B = np.zeros((onsets.shape[0], 1))

    for idx, (cond, onset) in enumerate(zip(cond_order, onsets_res)):
        # set the design matrix
        X[onset:onset+stim_duration_res, idx] = 1
        X[:, idx] = np.convolve(
            X[:, idx], hemodynamic_models._gamma_difference_hrf(
                tr, oversampling=sampling_rate))[0:X.shape[0]]
        # set the beta for the trial depending on condition
        B[idx, :] = betas[cond]

    # downsample X so it's back to TR resolution
    X = X[::sampling_rate, :]

    signal = X @ B
    signal = np.squeeze(signal)
    if noise > 0.0:
        np.random.seed(12345)
        # make the noise component
        n_trs = int(duration / tr)
        ar = np.array([1, -rho])  # statmodels says to invert rho
        ap = ArmaProcess(ar)
        err = ap.generate_sample(n_trs, scale=noise, axis=0)

        Y = signal + err
    else:
        Y = signal

    return Y
Esempio n. 26
0
def get_AR(process, iters, params):
    # AR
    if params == None:
        params = {'AR': [-0.999]}

    metadata = {"NAME": process, "number_of_iterations": iters}
    metadata.update(params)

    ar = np.array([1] + params['AR'])
    ar_object = ArmaProcess(ar, [1])
    y = ar_object.generate_sample(nsample=iters)
    true_var = sum([
        y[i:-(len(ar) - i)] * (-1 * ar[len(ar) - i])
        for i in range(1, len(ar))
    ]) + sps.norm.ppf(0.01)
    y = y[len(ar):]

    data = pd.DataFrame(data={'Returns': y, 'True_VAR_0.01': true_var})
    return metadata, data
def estimate_order_of_model_information_criteria():
    ma = np.array([1])
    ar = np.array([1, -0.6, -0.3])
    AR_object = ArmaProcess(ar, ma)
    simulated_data_2 = AR_object.generate_sample(nsample=5000)

    # Fit the data to an AR(p) for p = 0,...,6 , and save the BIC
    BIC = np.zeros(7)
    for p in range(7):
        mod = ARMA(simulated_data_2, order=(p, 0))
        res = mod.fit()
    # Save BIC for AR(p)
        BIC[p] = res.bic

    # Plot the BIC as a function of p
    plt.plot(range(1, 7), BIC[1:7], marker='o')
    plt.xlabel('Order of AR Model')
    plt.ylabel('Bayesian Information Criterion')
    plt.show()
Esempio n. 28
0
def simulate_ar_process(phi=0.9, plot=False):
    """
    # 0 lag coefficient of 1
    # sign of other coefficient is opposite from what we are using

    # Example, AR(1) process with phi = 0.9
    # the second element of AR array should be the opposite sign, - 0.9
    # Since ignoring MA at the moment, we just use 1

    :param phi:
    :return:
    """
    ar = np.array([1, -phi])
    ma = np.array([1])
    AR_object = ArmaProcess(ar, ma)
    simulated_data = AR_object.generate_sample(nsample=1000)
    if plot:
        plt.plot(simulated_data)
        plt.show()
    return simulated_data
Esempio n. 29
0
def estimating_an_ma_model():
    ar1 = np.array([1])
    ma1 = np.array([1, -0.9])
    MA_object1 = ArmaProcess(ar1, ma1)
    simulated_data_1 = MA_object1.generate_sample(nsample=1000)

    # Fit an MA(1) model to the first simulated data
    mod = ARMA(simulated_data_1, order=(0, 1))
    res = mod.fit()

    # Print out summary information on the fit
    print(res.summary())

    # Print out the estimate for the constant and for theta
    print(
        "When the true theta=-0.9, the estimate of theta (and the constant) are:"
    )
    print(res.params)

    return res
Esempio n. 30
0
def plot_MA(maxit = 100, N = 365, T = 1000, save=False, name='img/results/emission.png'):
    """Generate emission model output with transition replaced with MA.
    
    Transition model is defined as
    
        z_t = z_{t-1} + 3*sin(2*pi*t/T)
    
    Args:
        maxit (int): Number of samples
        N (int): Size of time range.
        T (int): Constant test size.
        save (bool, optional): Whether to save the figure, defaultly not.
        name (str, optional): Path to save the plot to.
    """
    # create model    
    MA = ArmaProcess(ma = [.2,-.4,.2,-.7])
    # iterate
    z = np.zeros((maxit, N))
    x = np.zeros((maxit, N))
    for i in range(maxit):
        # create z[t] sample
        z[i,:] = MA.generate_sample(nsample=N) + 3*np.sin(np.array(range(N))/N*2*np.pi)
        z[i,:] = (z[i,:] - z[i,:].min()) / (z[i,:].max() - z[i,:].min())
        # create x[t] sample
        x[i,:] = emission(z[i,:], np.array([T for i in range(N)]), 1, 50)
    def get_mu_ci(ts):
        mu = ts.mean(axis = 0)
        ci = np.quantile(ts, [.025,.975],axis=0)
        return mu,ci
    z_mu,z_ci = get_mu_ci(z)
    x_mu,x_ci = get_mu_ci(x)
    # plot
    fig1, ax1 = plt.subplots()
    ax1.plot(range(N), z_mu, color='red', label='z[t]')
    ax1.fill_between(range(N), z_ci[0,:], z_ci[1,:], color = 'red', alpha = .1)
    ax1.plot(range(N), x_mu, color='blue', label='x[t]')
    ax1.fill_between(range(N), x_ci[0,:], x_ci[1,:], color = 'blue', alpha = .1)
    ax1.set_xlabel('Time')
    ax1.set_ylabel('Value')
    ax1.legend()
    if save: fig1.savefig(name)
Esempio n. 31
0
def test_simulated_y_custom_model():
    np.random.seed(1)
    ar = np.r_[1, 0.9]
    ma = np.array([1])
    arma_process = ArmaProcess(ar, ma)
    X = 100 + arma_process.generate_sample(nsample=100)
    y = 1.2 * X + np.random.normal(size=(100))
    data = pd.DataFrame({'y': y, 'X': X}, columns=['y', 'X'])
    intervention_idx = 70
    normed_pre_data, _ = standardize(data.iloc[:intervention_idx])

    model = UnobservedComponents(
        endog=normed_pre_data['y'].iloc[0:intervention_idx],
        level='llevel',
        exog=normed_pre_data['X'].iloc[0:intervention_idx])

    ci = CausalImpact(data, [0, 69], [70, 99], model=model)

    assert ci.simulated_y.shape == (1000, 30)

    lower, upper = np.percentile(ci.simulated_y.mean(axis=1), [5, 95])
    assert lower > 119
    assert upper < 121
Esempio n. 32
0
arma_t.isinvertible()

# <codecell>

arma_t.isstationary()

# <rawcell>

# * What does this mean?

# <codecell>

fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(arma_t.generate_sample(size=50));

# <codecell>

arparams = np.array([1, .35, -.15, .55, .1])
maparams = np.array([1, .65])
arma_t = ArmaProcess(arparams, maparams)
arma_t.isstationary()

# <codecell>

arma_rvs = arma_t.generate_sample(size=500, burnin=250, scale=2.5)

# <codecell>

fig = plt.figure(figsize=(12,8))
,
0.8
,
0.8
2
,
0.8
3
,
…
Simulate 5000 observations of the MA(30) model
Plot the ACF of the simulated series
'''



# import the modules for simulating data and plotting the ACF
from statsmodels.tsa.arima_process import ArmaProcess
from statsmodels.graphics.tsaplots import plot_acf

# Build a list MA parameters
ma = [0.8**i for i in range(30)]

# Simulate the MA(30) model
ar = np.array([1])
AR_object = ArmaProcess(ar, ma)
simulated_data = AR_object.generate_sample(nsample=5000)

# Plot the ACF
plot_acf(simulated_data, lags=30)
plt.show()
100XP
Import the class ArmaProcess in the arima_process module.
Plot the simulated AR procesees:
Let ar1 represent an array of the AR parameters [1, −ϕ
−
ϕ
] as explained above. For now, the MA parmater array, ma1, will contain just the lag-zero coefficient of one.
With parameters ar1 and ma1, create an instance of the class ArmaProcess(ar,ma) called AR_object1.
Simulate 1000 data points from the object you just created, AR_object1, using the method .generate_sample(). Plot the simulated data in a subplot.
Repeat for the other AR parameter.
'''
# import the module for simulating data
from statsmodels.tsa.arima_process import ArmaProcess

# Plot 1: AR parameter = +0.9
plt.subplot(2,1,1)
ar1 = np.array([1, -0.9])
ma1 = np.array([1])
AR_object1 = ArmaProcess(ar1, ma1)
simulated_data_1 = AR_object1.generate_sample(nsample=1000)
plt.plot(simulated_data_1)

# Plot 2: AR parameter = -0.9
plt.subplot(2,1,2)
ar2 = np.array([1, 0.9])
ma2 = np.array([1])
AR_object2 = ArmaProcess(ar2, ma2)
simulated_data_2 = AR_object2.generate_sample(nsample=1000)
plt.plot(simulated_data_2)
plt.show()
Esempio n. 35
0
        axes[3].set_ylabel('Irregular')

        fig.tight_layout()
        return fig


if __name__ == "__main__":
    import numpy as np
    from statsmodels.tsa.arima_process import ArmaProcess
    np.random.seed(123)
    ar = [1, .35, .8]
    ma = [1, .8]
    arma = ArmaProcess(ar, ma, nobs=100)
    assert arma.isstationary()
    assert arma.isinvertible()
    y = arma.generate_sample()
    dates = pd.date_range("1/1/1990", periods=len(y), freq='M')
    ts = pd.TimeSeries(y, index=dates)

    xpath = "/home/skipper/src/x12arima/x12a"

    try:
        results = x13_arima_analysis(xpath, ts)
    except:
        print("Caught exception")

    results = x13_arima_analysis(xpath, ts, log=False)

    # import pandas as pd
    # seas_y = pd.read_csv("usmelec.csv")
    # seas_y = pd.TimeSeries(seas_y["usmelec"].values,