def __init__(self, store=None, data=None, train_index=None, prep_index=None): """ **Args** store: An instance of `store.Store` or a path. If a path Ramp will default to an `HDFPickleStore` at that path if PyTables is installed, a `PickleStore` otherwise. Defaults to MemoryStore. data: a pandas DataFrame. If all data has been precomputed this may not be required. train_index: a pandas Index specifying the data instances to be used in training. Stored results will be cached against this. If not provided, the entire index of `data` will be used. prep_index: a pandas Index specifying the data instances to be used in prepping ("x" values). Stored results will be cached against this. If not provided, the entire index of `data` will be used. """ if store is None: self.store = MemoryStore() else: self.store = store if isinstance(store, Store) else default_store(store) self.data = data self.train_index = train_index if train_index is not None else self.data.index if self.data is not None else None self.prep_index = prep_index if prep_index is not None else self.data.index if self.data is not None else None
def main(): store = MemoryStore() load(store) for host in ('www.google.com', 'www.amazon.com'): print('{0}: {1}'.format( host, store.lookup(socket.gethostbyname(host), 'ipv4').cc ))
def __init__(self, store=None, data=None, train_index=None, prep_index=None, train_once=False): """ Parameters: ----------- store: string or ramp.store.Store object, default None An instance of `ramp.store.Store` or a path. If a path, Ramp will default to an `HDFPickleStore` at that path if PyTables is installed, a `PickleStore` otherwise. Defaults to MemoryStore. data: Pandas DataFrame, default None Dataframe of data. If all data has been precomputed this may not be required. train_index: Pandas DataFrame Index, default None Pandas Index specifying the data instances to be used in training. Stored results will be cached against this.If not provided, the entire index of the 'data' parameter will be used. prep_index: Pandas DataFrame Index, default None Pandas Index specifying the data instances to be used in prepping ("x" values). Stored results will be cached against this. If not provided, the entire index of `data` keyword arg will be used. train_once: boolean If True, train and predict indexes will not be used as part of key hashes, meaning the values from the first run with this context will be stored permanently. """ if store is None: self.store = MemoryStore() else: self.store = (store if isinstance(store, Store) else default_store(store)) self.data = data if train_index is not None: self.train_index = train_index elif self.data is not None: self.train_index = self.data.index else: self.train_index = None if prep_index is not None: self.prep_index = prep_index elif self.data is not None: self.prep_index = self.data.index else: self.prep_index = None self.train_once = train_once
import urltools from flask import Flask, request from flask.helpers import make_response from flask.json import jsonify from store import MemoryStore app = Flask(__name__) app.config['JSON_AS_ASCII'] = False # encode utf-8 store = MemoryStore() @app.route('/stories/<page_id>') def show_tags(page_id): page = store.get_page(int(page_id)) if page: return jsonify(page.to_json()) return make_response('Not Found', 404) @app.route('/stories', methods=['POST']) def register_url(): url_param = request.args.get('url') if not url_param: return make_response("url param is missing", 400) # bad request # TODO: advanced input validation # https://validators.readthedocs.io/en/latest/#module-validators.url # https://github.com/django/django/blob/master/django/core/validators.py#L74
trace_activity = Activity( label="TurnError", name="on_turn_error Trace", timestamp=datetime.utcnow(), type=ActivityTypes.trace, value=f"{error}", value_type="https://www.botframework.com/schemas/error", ) # Send a trace activity, which will be displayed in Bot Framework Emulator await context.send_activity(trace_activity) ADAPTER.on_turn_error = on_error # Create the Bot STORAGE = MemoryStore() # Use BlobStore to test with Azure Blob storage. # STORAGE = BlobStore(CONFIG.BLOB_ACCOUNT_NAME, CONFIG.BLOB_KEY, CONFIG.BLOB_CONTAINER) DIALOG = RootDialog() BOT = ScaleoutBot(STORAGE, DIALOG) # Listen for incoming requests on /api/messages async def messages(req: Request) -> Response: # Main bot message handler. if "application/json" in req.headers["Content-Type"]: body = await req.json() else: return Response(status=415) activity = Activity().deserialize(body)
class DataContext(object): """ The DataContext is the data storage environment for the Ramp analysis. For a given store and pandas index value, Ramp will consider the data immutable, and will not check for changes in the data. """ def __init__(self, store=None, data=None, train_index=None, prep_index=None, train_once=False): """ Parameters: ----------- store: string or ramp.store.Store object, default None An instance of `ramp.store.Store` or a path. If a path, Ramp will default to an `HDFPickleStore` at that path if PyTables is installed, a `PickleStore` otherwise. Defaults to MemoryStore. data: Pandas DataFrame, default None Dataframe of data. If all data has been precomputed this may not be required. train_index: Pandas DataFrame Index, default None Pandas Index specifying the data instances to be used in training. Stored results will be cached against this.If not provided, the entire index of the 'data' parameter will be used. prep_index: Pandas DataFrame Index, default None Pandas Index specifying the data instances to be used in prepping ("x" values). Stored results will be cached against this. If not provided, the entire index of `data` keyword arg will be used. train_once: boolean If True, train and predict indexes will not be used as part of key hashes, meaning the values from the first run with this context will be stored permanently. """ if store is None: self.store = MemoryStore() else: self.store = (store if isinstance(store, Store) else default_store(store)) self.data = data if train_index is not None: self.train_index = train_index elif self.data is not None: self.train_index = self.data.index else: self.train_index = None if prep_index is not None: self.prep_index = prep_index elif self.data is not None: self.prep_index = self.data.index else: self.prep_index = None self.train_once = train_once def key_on_indices(self): return not self.train_once def copy(self): """Make a shallow copy of the DataContext""" return copy.copy(self) def create_key(self): """Create hex key using MD5 algorithm.""" if not self.key_on_indices(): return '' return md5('%s--%s' % (get_np_hashable( self.train_index), get_np_hashable(self.prep_index))).hexdigest() def save_context(self, name, config=None): """ Saves this context (specifically it's train and prep indices) to it's store with the given name, along with the config, if provided. """ ctx = { 'train_index': self.train_index, 'prep_index': self.prep_index, 'config': config } self.store.save('context__%s' % name, ctx) def load_context(self, name): """ Loads a previously saved context with given name, assigning the stored training and prep indices and returning any stored config. """ ctx = self.store.load('context__%s' % name) self.train_index = ctx['train_index'] self.prep_index = ctx['prep_index'] return ctx['config']
class DataContext(object): """ All Ramp analyses require a DataContext. A DataContext represents the environment of the analysis. Most importantly this means for a given store and pandas index value, Ramp will consider the data immutable -- it will not check the data again to see if it has changed. """ def __init__(self, store=None, data=None, train_index=None, prep_index=None): """ **Args** store: An instance of `store.Store` or a path. If a path Ramp will default to an `HDFPickleStore` at that path if PyTables is installed, a `PickleStore` otherwise. Defaults to MemoryStore. data: a pandas DataFrame. If all data has been precomputed this may not be required. train_index: a pandas Index specifying the data instances to be used in training. Stored results will be cached against this. If not provided, the entire index of `data` will be used. prep_index: a pandas Index specifying the data instances to be used in prepping ("x" values). Stored results will be cached against this. If not provided, the entire index of `data` will be used. """ if store is None: self.store = MemoryStore() else: self.store = store if isinstance(store, Store) else default_store(store) self.data = data self.train_index = train_index if train_index is not None else self.data.index if self.data is not None else None self.prep_index = prep_index if prep_index is not None else self.data.index if self.data is not None else None def copy(self): return copy.copy(self) def create_key(self): return md5('%s--%s' % (get_np_hashable(self.train_index), get_np_hashable(self.prep_index))).hexdigest() def save_context(self, name, config=None): """ Saves this context (specifically it's train and prep indices) to it's store with the given name, along with the config, if provided. """ ctx = {'train_index':self.train_index, 'prep_index':self.prep_index, 'config':config} self.store.save('context__%s' % name, ctx) def load_context(self, name): """ Loads a previously saved context with given name, assigning the stored training and prep indices and returning any stored config. """ ctx = self.store.load('context__%s' % name) self.train_index = ctx['train_index'] self.prep_index = ctx['prep_index'] return ctx['config']
class DataContext(object): """ The DataContext is the data storage environment for the Ramp analysis. For a given store and pandas index value, Ramp will consider the data immutable, and will not check for changes in the data. """ def __init__(self, store=None, data=None, train_index=None, prep_index=None): """ Parameters: ----------- store: string or ramp.store.Store object, default None An instance of `ramp.store.Store` or a path. If a path, Ramp will default to an `HDFPickleStore` at that path if PyTables is installed, a `PickleStore` otherwise. Defaults to MemoryStore. data: Pandas DataFrame, default None Dataframe of data. If all data has been precomputed this may not be required. train_index: Pandas DataFrame Index, default None Pandas Index specifying the data instances to be used in training. Stored results will be cached against this.If not provided, the entire index of the 'data' parameter will be used. prep_index: Pandas DataFrame Index, default None Pandas Index specifying the data instances to be used in prepping ("x" values). Stored results will be cached against this. If not provided, the entire index of `data` keyword arg will be used. """ if store is None: self.store = MemoryStore() else: self.store = (store if isinstance(store, Store) else default_store(store)) self.data = data if train_index is not None: self.train_index = train_index elif self.data is not None: self.train_index = self.data.index else: self.train_index = None if prep_index is not None: self.prep_index = prep_index elif self.data is not None: self.prep_index = self.data.index else: self.prep_index = None def copy(self): """Make a shallow copy of the DataContext""" return copy.copy(self) def create_key(self): """Create hex key using MD5 algorithm.""" return md5('%s--%s' % (get_np_hashable(self.train_index), get_np_hashable(self.prep_index))).hexdigest() def save_context(self, name, config=None): """ Saves this context (specifically it's train and prep indices) to it's store with the given name, along with the config, if provided. """ ctx = {'train_index': self.train_index, 'prep_index': self.prep_index, 'config': config} self.store.save('context__%s' % name, ctx) def load_context(self, name): """ Loads a previously saved context with given name, assigning the stored training and prep indices and returning any stored config. """ ctx = self.store.load('context__%s' % name) self.train_index = ctx['train_index'] self.prep_index = ctx['prep_index'] return ctx['config']
class DataContext(object): """ All Ramp analyses require a DataContext. A DataContext represents the environment of the analysis. Most importantly this means for a given store and pandas index value, Ramp will consider the data immutable -- it will not check the data again to see if it has changed. """ def __init__(self, store=None, data=None, train_index=None, prep_index=None): """ **Args** store: An instance of `store.Store` or a path. If a path Ramp will default to an `HDFPickleStore` at that path if PyTables is installed, a `PickleStore` otherwise. Defaults to MemoryStore. data: a pandas DataFrame. If all data has been precomputed this may not be required. train_index: a pandas Index specifying the data instances to be used in training. Stored results will be cached against this. If not provided, the entire index of `data` will be used. prep_index: a pandas Index specifying the data instances to be used in prepping ("x" values). Stored results will be cached against this. If not provided, the entire index of `data` will be used. """ if store is None: self.store = MemoryStore() else: self.store = store if isinstance(store, Store) else default_store(store) self.data = data self.train_index = train_index if train_index is not None else self.data.index if self.data is not None else None self.prep_index = prep_index if prep_index is not None else self.data.index if self.data is not None else None def copy(self): return copy.copy(self) def create_key(self): return md5('%s--%s' % (get_np_hashable( self.train_index), get_np_hashable(self.prep_index))).hexdigest() def save_context(self, name, config=None): """ Saves this context (specifically it's train and prep indices) to it's store with the given name, along with the config, if provided. """ ctx = { 'train_index': self.train_index, 'prep_index': self.prep_index, 'config': config } self.store.save('context__%s' % name, ctx) def load_context(self, name): """ Loads a previously saved context with given name, assigning the stored training and prep indices and returning any stored config. """ ctx = self.store.load('context__%s' % name) self.train_index = ctx['train_index'] self.prep_index = ctx['prep_index'] return ctx['config']