Esempio n. 1
0
    def _form_permutation_matrices(self):
        """Form the permutation matrices Pq and Pu."""

        # Extract dimension variables
        l, m, n, o, s, k = self._dims
        # Compute permutation matrices
        if n != 0:
            self._Pq = permutation_matrix(self.q, Matrix([self.q_i, self.q_d]))
            if l > 0:
                self._Pqi = self._Pq[:, :-l]
                self._Pqd = self._Pq[:, -l:]
            else:
                self._Pqi = self._Pq
                self._Pqd = Matrix()
        if o != 0:
            self._Pu = permutation_matrix(self.u, Matrix([self.u_i, self.u_d]))
            if m > 0:
                self._Pui = self._Pu[:, :-m]
                self._Pud = self._Pu[:, -m:]
            else:
                self._Pui = self._Pu
                self._Pud = Matrix()
        # Compute combination permutation matrix for computing A and B
        P_col1 = Matrix([self._Pqi, zeros(o + k, n - l)])
        P_col2 = Matrix([zeros(n, o - m), self._Pui, zeros(k, o - m)])
        if P_col1:
            if P_col2:
                self.perm_mat = P_col1.row_join(P_col2)
            else:
                self.perm_mat = P_col1
        else:
            self.perm_mat = P_col2
Esempio n. 2
0
    def _form_permutation_matrices(self):
        """Form the permutation matrices Pq and Pu."""

        # Extract dimension variables
        l, m, n, o, s, k = self._dims
        # Compute permutation matrices
        if n != 0:
            self._Pq = permutation_matrix(self.q, Matrix([self.q_i, self.q_d]))
            if l > 0:
                self._Pqi = self._Pq[:, :-l]
                self._Pqd = self._Pq[:, -l:]
            else:
                self._Pqi = self._Pq
                self._Pqd = Matrix()
        if o != 0:
            self._Pu = permutation_matrix(self.u, Matrix([self.u_i, self.u_d]))
            if m > 0:
                self._Pui = self._Pu[:, :-m]
                self._Pud = self._Pu[:, -m:]
            else:
                self._Pui = self._Pu
                self._Pud = Matrix()
        # Compute combination permutation matrix for computing A and B
        P_col1 = Matrix([self._Pqi, zeros(o + k, n - l)])
        P_col2 = Matrix([zeros(n, o - m), self._Pui, zeros(k, o - m)])
        if P_col1:
            if P_col2:
                self.perm_mat = P_col1.row_join(P_col2)
            else:
                self.perm_mat = P_col1
        else:
            self.perm_mat = P_col2
Esempio n. 3
0
    def linearize(self, op_point=None, A_and_B=False, simplify=False):
        """Linearize the system about the operating point. Note that
        q_op, u_op, qd_op, ud_op must satisfy the equations of motion.
        These may be either symbolic or numeric.

        Parameters
        ----------
        op_point : dict or iterable of dicts, optional
            Dictionary or iterable of dictionaries containing the operating
            point conditions. These will be substituted in to the linearized
            system before the linearization is complete. Leave blank if you
            want a completely symbolic form. Note that any reduction in
            symbols (whether substituted for numbers or expressions with a
            common parameter) will result in faster runtime.

        A_and_B : bool, optional
            If A_and_B=False (default), (M, A, B) is returned for forming
            [M]*[q, u]^T = [A]*[q_ind, u_ind]^T + [B]r. If A_and_B=True,
            (A, B) is returned for forming dx = [A]x + [B]r, where
            x = [q_ind, u_ind]^T.

        simplify : bool, optional
            Determines if returned values are simplified before return.
            For large expressions this may be time consuming. Default is False.

        Potential Issues
        ----------------
            Note that the process of solving with A_and_B=True is
            computationally intensive if there are many symbolic parameters.
            For this reason, it may be more desirable to use the default
            A_and_B=False, returning M, A, and B. More values may then be
            substituted in to these matrices later on. The state space form can
            then be found as A = P.T*M.LUsolve(A), B = P.T*M.LUsolve(B), where
            P = Linearizer.perm_mat.
        """

        # Run the setup if needed:
        if not self._setup_done:
            self._setup()

        # Compose dict of operating conditions
        if isinstance(op_point, dict):
            op_point_dict = op_point
        elif isinstance(op_point, Iterable):
            op_point_dict = {}
            for op in op_point:
                op_point_dict.update(op)
        else:
            op_point_dict = {}

        # Extract dimension variables
        l, m, n, o, s, k = self._dims

        # Rename terms to shorten expressions
        M_qq = self._M_qq
        M_uqc = self._M_uqc
        M_uqd = self._M_uqd
        M_uuc = self._M_uuc
        M_uud = self._M_uud
        M_uld = self._M_uld
        A_qq = self._A_qq
        A_uqc = self._A_uqc
        A_uqd = self._A_uqd
        A_qu = self._A_qu
        A_uuc = self._A_uuc
        A_uud = self._A_uud
        B_u = self._B_u
        C_0 = self._C_0
        C_1 = self._C_1
        C_2 = self._C_2

        # Build up Mass Matrix
        #     |M_qq    0_nxo   0_nxk|
        # M = |M_uqc   M_uuc   0_mxk|
        #     |M_uqd   M_uud   M_uld|
        if o != 0:
            col2 = Matrix([zeros(n, o), M_uuc, M_uud])
        if k != 0:
            col3 = Matrix([zeros(n + m, k), M_uld])
        if n != 0:
            col1 = Matrix([M_qq, M_uqc, M_uqd])
            if o != 0 and k != 0:
                M = col1.row_join(col2).row_join(col3)
            elif o != 0:
                M = col1.row_join(col2)
            else:
                M = col1
        elif k != 0:
            M = col2.row_join(col3)
        else:
            M = col2
        M_eq = msubs(M, op_point_dict)

        # Build up state coefficient matrix A
        #     |(A_qq + A_qu*C_1)*C_0       A_qu*C_2|
        # A = |(A_uqc + A_uuc*C_1)*C_0    A_uuc*C_2|
        #     |(A_uqd + A_uud*C_1)*C_0    A_uud*C_2|
        # Col 1 is only defined if n != 0
        if n != 0:
            r1c1 = A_qq
            if o != 0:
                r1c1 += (A_qu * C_1)
            r1c1 = r1c1 * C_0
            if m != 0:
                r2c1 = A_uqc
                if o != 0:
                    r2c1 += (A_uuc * C_1)
                r2c1 = r2c1 * C_0
            else:
                r2c1 = Matrix()
            if o - m + k != 0:
                r3c1 = A_uqd
                if o != 0:
                    r3c1 += (A_uud * C_1)
                r3c1 = r3c1 * C_0
            else:
                r3c1 = Matrix()
            col1 = Matrix([r1c1, r2c1, r3c1])
        else:
            col1 = Matrix()
        # Col 2 is only defined if o != 0
        if o != 0:
            if n != 0:
                r1c2 = A_qu * C_2
            else:
                r1c2 = Matrix()
            if m != 0:
                r2c2 = A_uuc * C_2
            else:
                r2c2 = Matrix()
            if o - m + k != 0:
                r3c2 = A_uud * C_2
            else:
                r3c2 = Matrix()
            col2 = Matrix([r1c2, r2c2, r3c2])
        else:
            col2 = Matrix()
        if col1:
            if col2:
                Amat = col1.row_join(col2)
            else:
                Amat = col1
        else:
            Amat = col2
        Amat_eq = msubs(Amat, op_point_dict)

        # Build up the B matrix if there are forcing variables
        #     |0_(n + m)xs|
        # B = |B_u        |
        if s != 0 and o - m + k != 0:
            Bmat = zeros(n + m, s).col_join(B_u)
            Bmat_eq = msubs(Bmat, op_point_dict)
        else:
            Bmat_eq = Matrix()

        # kwarg A_and_B indicates to return  A, B for forming the equation
        # dx = [A]x + [B]r, where x = [q_indnd, u_indnd]^T,
        import sympy
        if A_and_B:
            A_cont = self.perm_mat.T * M_eq.LUsolve(Amat_eq)
            if Bmat_eq:
                B_cont = self.perm_mat.T * M_eq.LUsolve(Bmat_eq)
            else:
                # Bmat = Matrix([]), so no need to sub
                B_cont = Bmat_eq
            if simplify:
                sympy.simplify(A_cont)
                sympy.simplify(B_cont)
            return A_cont, B_cont
        # Otherwise return M, A, B for forming the equation
        # [M]dx = [A]x + [B]r, where x = [q, u]^T
        else:
            if simplify:
                sympy.simplify(M_eq)
                sympy.simplify(Amat_eq)
                sympy.simplify(Bmat_eq)
            return M_eq, Amat_eq, Bmat_eq
Esempio n. 4
0
class LagrangesMethod(object):
    """Lagrange's method object.

    This object generates the equations of motion in a two step procedure. The
    first step involves the initialization of LagrangesMethod by supplying the
    Lagrangian and the generalized coordinates, at the bare minimum. If there
    are any constraint equations, they can be supplied as keyword arguments.
    The Lagrange multipliers are automatically generated and are equal in
    number to the constraint equations. Similarly any non-conservative forces
    can be supplied in an iterable (as described below and also shown in the
    example) along with a ReferenceFrame. This is also discussed further in the
    __init__ method.

    Attributes
    ==========

    q, u : Matrix
        Matrices of the generalized coordinates and speeds
    forcelist : iterable
        Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
        describing the forces on the system.
    bodies : iterable
        Iterable containing the rigid bodies and particles of the system.
    mass_matrix : Matrix
        The system's mass matrix
    forcing : Matrix
        The system's forcing vector
    mass_matrix_full : Matrix
        The "mass matrix" for the qdot's, qdoubledot's, and the
        lagrange multipliers (lam)
    forcing_full : Matrix
        The forcing vector for the qdot's, qdoubledot's and
        lagrange multipliers (lam)

    Examples
    ========

    This is a simple example for a one degree of freedom translational
    spring-mass-damper.

    In this example, we first need to do the kinematics.
    This involves creating generalized coordinates and their derivatives.
    Then we create a point and set its velocity in a frame.

        >>> from sympy.physics.mechanics import LagrangesMethod, Lagrangian
        >>> from sympy.physics.mechanics import ReferenceFrame, Particle, Point
        >>> from sympy.physics.mechanics import dynamicsymbols
        >>> from sympy import symbols
        >>> q = dynamicsymbols('q')
        >>> qd = dynamicsymbols('q', 1)
        >>> m, k, b = symbols('m k b')
        >>> N = ReferenceFrame('N')
        >>> P = Point('P')
        >>> P.set_vel(N, qd * N.x)

    We need to then prepare the information as required by LagrangesMethod to
    generate equations of motion.
    First we create the Particle, which has a point attached to it.
    Following this the lagrangian is created from the kinetic and potential
    energies.
    Then, an iterable of nonconservative forces/torques must be constructed,
    where each item is a (Point, Vector) or (ReferenceFrame, Vector) tuple,
    with the Vectors representing the nonconservative forces or torques.

        >>> Pa = Particle('Pa', P, m)
        >>> Pa.potential_energy = k * q**2 / 2.0
        >>> L = Lagrangian(N, Pa)
        >>> fl = [(P, -b * qd * N.x)]

    Finally we can generate the equations of motion.
    First we create the LagrangesMethod object. To do this one must supply
    the Lagrangian, and the generalized coordinates. The constraint equations,
    the forcelist, and the inertial frame may also be provided, if relevant.
    Next we generate Lagrange's equations of motion, such that:
    Lagrange's equations of motion = 0.
    We have the equations of motion at this point.

        >>> l = LagrangesMethod(L, [q], forcelist = fl, frame = N)
        >>> print(l.form_lagranges_equations())
        Matrix([[b*Derivative(q(t), t) + 1.0*k*q(t) + m*Derivative(q(t), (t, 2))]])

    We can also solve for the states using the 'rhs' method.

        >>> print(l.rhs())
        Matrix([[Derivative(q(t), t)], [(-b*Derivative(q(t), t) - 1.0*k*q(t))/m]])

    Please refer to the docstrings on each method for more details.
    """
    def __init__(self,
                 Lagrangian,
                 qs,
                 forcelist=None,
                 bodies=None,
                 frame=None,
                 hol_coneqs=None,
                 nonhol_coneqs=None):
        """Supply the following for the initialization of LagrangesMethod

        Lagrangian : Sympifyable

        qs : array_like
            The generalized coordinates

        hol_coneqs : array_like, optional
            The holonomic constraint equations

        nonhol_coneqs : array_like, optional
            The nonholonomic constraint equations

        forcelist : iterable, optional
            Takes an iterable of (Point, Vector) or (ReferenceFrame, Vector)
            tuples which represent the force at a point or torque on a frame.
            This feature is primarily to account for the nonconservative forces
            and/or moments.

        bodies : iterable, optional
            Takes an iterable containing the rigid bodies and particles of the
            system.

        frame : ReferenceFrame, optional
            Supply the inertial frame. This is used to determine the
            generalized forces due to non-conservative forces.
        """

        self._L = Matrix([sympify(Lagrangian)])
        self.eom = None
        self._m_cd = Matrix()  # Mass Matrix of differentiated coneqs
        self._m_d = Matrix()  # Mass Matrix of dynamic equations
        self._f_cd = Matrix()  # Forcing part of the diff coneqs
        self._f_d = Matrix()  # Forcing part of the dynamic equations
        self.lam_coeffs = Matrix()  # The coeffecients of the multipliers

        forcelist = forcelist if forcelist else []
        if not iterable(forcelist):
            raise TypeError('Force pairs must be supplied in an iterable.')
        self._forcelist = forcelist
        if frame and not isinstance(frame, ReferenceFrame):
            raise TypeError('frame must be a valid ReferenceFrame')
        self._bodies = bodies
        self.inertial = frame

        self.lam_vec = Matrix()

        self._term1 = Matrix()
        self._term2 = Matrix()
        self._term3 = Matrix()
        self._term4 = Matrix()

        # Creating the qs, qdots and qdoubledots
        if not iterable(qs):
            raise TypeError('Generalized coordinates must be an iterable')
        self._q = Matrix(qs)
        self._qdots = self.q.diff(dynamicsymbols._t)
        self._qdoubledots = self._qdots.diff(dynamicsymbols._t)

        mat_build = lambda x: Matrix(x) if x else Matrix()
        hol_coneqs = mat_build(hol_coneqs)
        nonhol_coneqs = mat_build(nonhol_coneqs)
        self.coneqs = Matrix(
            [hol_coneqs.diff(dynamicsymbols._t), nonhol_coneqs])
        self._hol_coneqs = hol_coneqs

    def form_lagranges_equations(self):
        """Method to form Lagrange's equations of motion.

        Returns a vector of equations of motion using Lagrange's equations of
        the second kind.
        """

        qds = self._qdots
        qdd_zero = dict((i, 0) for i in self._qdoubledots)
        n = len(self.q)

        # Internally we represent the EOM as four terms:
        # EOM = term1 - term2 - term3 - term4 = 0

        # First term
        self._term1 = self._L.jacobian(qds)
        self._term1 = self._term1.diff(dynamicsymbols._t).T

        # Second term
        self._term2 = self._L.jacobian(self.q).T

        # Third term
        if self.coneqs:
            coneqs = self.coneqs
            m = len(coneqs)
            # Creating the multipliers
            self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1)))
            self.lam_coeffs = -coneqs.jacobian(qds)
            self._term3 = self.lam_coeffs.T * self.lam_vec
            # Extracting the coeffecients of the qdds from the diff coneqs
            diffconeqs = coneqs.diff(dynamicsymbols._t)
            self._m_cd = diffconeqs.jacobian(self._qdoubledots)
            # The remaining terms i.e. the 'forcing' terms in diff coneqs
            self._f_cd = -diffconeqs.subs(qdd_zero)
        else:
            self._term3 = zeros(n, 1)

        # Fourth term
        if self.forcelist:
            N = self.inertial
            self._term4 = zeros(n, 1)
            for i, qd in enumerate(qds):
                flist = zip(*_f_list_parser(self.forcelist, N))
                self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist)
        else:
            self._term4 = zeros(n, 1)

        # Form the dynamic mass and forcing matrices
        without_lam = self._term1 - self._term2 - self._term4
        self._m_d = without_lam.jacobian(self._qdoubledots)
        self._f_d = -without_lam.subs(qdd_zero)

        # Form the EOM
        self.eom = without_lam - self._term3
        return self.eom

    @property
    def mass_matrix(self):
        """Returns the mass matrix, which is augmented by the Lagrange
        multipliers, if necessary.

        If the system is described by 'n' generalized coordinates and there are
        no constraint equations then an n X n matrix is returned.

        If there are 'n' generalized coordinates and 'm' constraint equations
        have been supplied during initialization then an n X (n+m) matrix is
        returned. The (n + m - 1)th and (n + m)th columns contain the
        coefficients of the Lagrange multipliers.
        """

        if self.eom is None:
            raise ValueError('Need to compute the equations of motion first')
        if self.coneqs:
            return (self._m_d).row_join(self.lam_coeffs.T)
        else:
            return self._m_d

    @property
    def mass_matrix_full(self):
        """Augments the coefficients of qdots to the mass_matrix."""

        if self.eom is None:
            raise ValueError('Need to compute the equations of motion first')
        n = len(self.q)
        m = len(self.coneqs)
        row1 = eye(n).row_join(zeros(n, n + m))
        row2 = zeros(n, n).row_join(self.mass_matrix)
        if self.coneqs:
            row3 = zeros(m, n).row_join(self._m_cd).row_join(zeros(m, m))
            return row1.col_join(row2).col_join(row3)
        else:
            return row1.col_join(row2)

    @property
    def forcing(self):
        """Returns the forcing vector from 'lagranges_equations' method."""

        if self.eom is None:
            raise ValueError('Need to compute the equations of motion first')
        return self._f_d

    @property
    def forcing_full(self):
        """Augments qdots to the forcing vector above."""

        if self.eom is None:
            raise ValueError('Need to compute the equations of motion first')
        if self.coneqs:
            return self._qdots.col_join(self.forcing).col_join(self._f_cd)
        else:
            return self._qdots.col_join(self.forcing)

    def to_linearizer(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None):
        """Returns an instance of the Linearizer class, initiated from the
        data in the LagrangesMethod class. This may be more desirable than using
        the linearize class method, as the Linearizer object will allow more
        efficient recalculation (i.e. about varying operating points).

        Parameters
        ==========
        q_ind, qd_ind : array_like, optional
            The independent generalized coordinates and speeds.
        q_dep, qd_dep : array_like, optional
            The dependent generalized coordinates and speeds.
        """

        # Compose vectors
        t = dynamicsymbols._t
        q = self.q
        u = self._qdots
        ud = u.diff(t)
        # Get vector of lagrange multipliers
        lams = self.lam_vec

        mat_build = lambda x: Matrix(x) if x else Matrix()
        q_i = mat_build(q_ind)
        q_d = mat_build(q_dep)
        u_i = mat_build(qd_ind)
        u_d = mat_build(qd_dep)

        # Compose general form equations
        f_c = self._hol_coneqs
        f_v = self.coneqs
        f_a = f_v.diff(t)
        f_0 = u
        f_1 = -u
        f_2 = self._term1
        f_3 = -(self._term2 + self._term4)
        f_4 = -self._term3

        # Check that there are an appropriate number of independent and
        # dependent coordinates
        if len(q_d) != len(f_c) or len(u_d) != len(f_v):
            raise ValueError(
                ("Must supply {:} dependent coordinates, and " +
                 "{:} dependent speeds").format(len(f_c), len(f_v)))
        if set(Matrix([q_i, q_d])) != set(q):
            raise ValueError("Must partition q into q_ind and q_dep, with " +
                             "no extra or missing symbols.")
        if set(Matrix([u_i, u_d])) != set(u):
            raise ValueError("Must partition qd into qd_ind and qd_dep, " +
                             "with no extra or missing symbols.")

        # Find all other dynamic symbols, forming the forcing vector r.
        # Sort r to make it canonical.
        insyms = set(Matrix([q, u, ud, lams]))
        r = list(find_dynamicsymbols(f_3, insyms))
        r.sort(key=default_sort_key)
        # Check for any derivatives of variables in r that are also found in r.
        for i in r:
            if diff(i, dynamicsymbols._t) in r:
                raise ValueError('Cannot have derivatives of specified \
                                 quantities when linearizing forcing terms.')

        return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
                          q_d, u_i, u_d, r, lams)

    def linearize(self,
                  q_ind=None,
                  qd_ind=None,
                  q_dep=None,
                  qd_dep=None,
                  **kwargs):
        """Linearize the equations of motion about a symbolic operating point.

        If kwarg A_and_B is False (default), returns M, A, B, r for the
        linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.

        If kwarg A_and_B is True, returns A, B, r for the linearized form
        dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
        computationally intensive if there are many symbolic parameters. For
        this reason, it may be more desirable to use the default A_and_B=False,
        returning M, A, and B. Values may then be substituted in to these
        matrices, and the state space form found as
        A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.

        In both cases, r is found as all dynamicsymbols in the equations of
        motion that are not part of q, u, q', or u'. They are sorted in
        canonical form.

        The operating points may be also entered using the ``op_point`` kwarg.
        This takes a dictionary of {symbol: value}, or a an iterable of such
        dictionaries. The values may be numeric or symbolic. The more values
        you can specify beforehand, the faster this computation will run.

        For more documentation, please see the ``Linearizer`` class."""

        linearizer = self.to_linearizer(q_ind, qd_ind, q_dep, qd_dep)
        result = linearizer.linearize(**kwargs)
        return result + (linearizer.r, )

    def solve_multipliers(self, op_point=None, sol_type='dict'):
        """Solves for the values of the lagrange multipliers symbolically at
        the specified operating point

        Parameters
        ==========
        op_point : dict or iterable of dicts, optional
            Point at which to solve at. The operating point is specified as
            a dictionary or iterable of dictionaries of {symbol: value}. The
            value may be numeric or symbolic itself.

        sol_type : str, optional
            Solution return type. Valid options are:
            - 'dict': A dict of {symbol : value} (default)
            - 'Matrix': An ordered column matrix of the solution
        """

        # Determine number of multipliers
        k = len(self.lam_vec)
        if k == 0:
            raise ValueError(
                "System has no lagrange multipliers to solve for.")
        # Compose dict of operating conditions
        if isinstance(op_point, dict):
            op_point_dict = op_point
        elif iterable(op_point):
            op_point_dict = {}
            for op in op_point:
                op_point_dict.update(op)
        elif op_point is None:
            op_point_dict = {}
        else:
            raise TypeError("op_point must be either a dictionary or an "
                            "iterable of dictionaries.")
        # Compose the system to be solved
        mass_matrix = self.mass_matrix.col_join(
            (-self.lam_coeffs.row_join(zeros(k, k))))
        force_matrix = self.forcing.col_join(self._f_cd)
        # Sub in the operating point
        mass_matrix = msubs(mass_matrix, op_point_dict)
        force_matrix = msubs(force_matrix, op_point_dict)
        # Solve for the multipliers
        sol_list = mass_matrix.LUsolve(-force_matrix)[-k:]
        if sol_type == 'dict':
            return dict(zip(self.lam_vec, sol_list))
        elif sol_type == 'Matrix':
            return Matrix(sol_list)
        else:
            raise ValueError("Unknown sol_type {:}.".format(sol_type))

    def rhs(self, inv_method=None, **kwargs):
        """Returns equations that can be solved numerically

        Parameters
        ==========

        inv_method : str
            The specific sympy inverse matrix calculation method to use. For a
            list of valid methods, see
            :meth:`~sympy.matrices.matrices.MatrixBase.inv`
        """

        if inv_method is None:
            self._rhs = self.mass_matrix_full.LUsolve(self.forcing_full)
        else:
            self._rhs = (
                self.mass_matrix_full.inv(inv_method, try_block_diag=True) *
                self.forcing_full)
        return self._rhs

    @property
    def q(self):
        return self._q

    @property
    def u(self):
        return self._qdots

    @property
    def bodies(self):
        return self._bodies

    @property
    def forcelist(self):
        return self._forcelist
Esempio n. 5
0
class LagrangesMethod(object):
    """Lagrange's method object.

    This object generates the equations of motion in a two step procedure. The
    first step involves the initialization of LagrangesMethod by supplying the
    Lagrangian and the generalized coordinates, at the bare minimum. If there
    are any constraint equations, they can be supplied as keyword arguments.
    The Lagrange multipliers are automatically generated and are equal in
    number to the constraint equations. Similarly any non-conservative forces
    can be supplied in an iterable (as described below and also shown in the
    example) along with a ReferenceFrame. This is also discussed further in the
    __init__ method.

    Attributes
    ==========

    q, u : Matrix
        Matrices of the generalized coordinates and speeds
    forcelist : iterable
        Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
        describing the forces on the system.
    bodies : iterable
        Iterable containing the rigid bodies and particles of the system.
    mass_matrix : Matrix
        The system's mass matrix
    forcing : Matrix
        The system's forcing vector
    mass_matrix_full : Matrix
        The "mass matrix" for the qdot's, qdoubledot's, and the
        lagrange multipliers (lam)
    forcing_full : Matrix
        The forcing vector for the qdot's, qdoubledot's and
        lagrange multipliers (lam)

    Examples
    ========

    This is a simple example for a one degree of freedom translational
    spring-mass-damper.

    In this example, we first need to do the kinematics.
    This involves creating generalized coordinates and their derivatives.
    Then we create a point and set its velocity in a frame.

        >>> from sympy.physics.mechanics import LagrangesMethod, Lagrangian
        >>> from sympy.physics.mechanics import ReferenceFrame, Particle, Point
        >>> from sympy.physics.mechanics import dynamicsymbols, kinetic_energy
        >>> from sympy import symbols
        >>> q = dynamicsymbols('q')
        >>> qd = dynamicsymbols('q', 1)
        >>> m, k, b = symbols('m k b')
        >>> N = ReferenceFrame('N')
        >>> P = Point('P')
        >>> P.set_vel(N, qd * N.x)

    We need to then prepare the information as required by LagrangesMethod to
    generate equations of motion.
    First we create the Particle, which has a point attached to it.
    Following this the lagrangian is created from the kinetic and potential
    energies.
    Then, an iterable of nonconservative forces/torques must be constructed,
    where each item is a (Point, Vector) or (ReferenceFrame, Vector) tuple,
    with the Vectors representing the nonconservative forces or torques.

        >>> Pa = Particle('Pa', P, m)
        >>> Pa.potential_energy = k * q**2 / 2.0
        >>> L = Lagrangian(N, Pa)
        >>> fl = [(P, -b * qd * N.x)]

    Finally we can generate the equations of motion.
    First we create the LagrangesMethod object. To do this one must supply
    the Lagrangian, and the generalized coordinates. The constraint equations,
    the forcelist, and the inertial frame may also be provided, if relevant.
    Next we generate Lagrange's equations of motion, such that:
    Lagrange's equations of motion = 0.
    We have the equations of motion at this point.

        >>> l = LagrangesMethod(L, [q], forcelist = fl, frame = N)
        >>> print(l.form_lagranges_equations())
        Matrix([[b*Derivative(q(t), t) + 1.0*k*q(t) + m*Derivative(q(t), t, t)]])

    We can also solve for the states using the 'rhs' method.

        >>> print(l.rhs())
        Matrix([[Derivative(q(t), t)], [(-b*Derivative(q(t), t) - 1.0*k*q(t))/m]])

    Please refer to the docstrings on each method for more details.
    """

    def __init__(self, Lagrangian, qs, forcelist=None, bodies=None, frame=None,
                 hol_coneqs=None, nonhol_coneqs=None):
        """Supply the following for the initialization of LagrangesMethod

        Lagrangian : Sympifyable

        qs : array_like
            The generalized coordinates

        hol_coneqs : array_like, optional
            The holonomic constraint equations

        nonhol_coneqs : array_like, optional
            The nonholonomic constraint equations

        forcelist : iterable, optional
            Takes an iterable of (Point, Vector) or (ReferenceFrame, Vector)
            tuples which represent the force at a point or torque on a frame.
            This feature is primarily to account for the nonconservative forces
            and/or moments.

        bodies : iterable, optional
            Takes an iterable containing the rigid bodies and particles of the
            system.

        frame : ReferenceFrame, optional
            Supply the inertial frame. This is used to determine the
            generalized forces due to non-conservative forces.
        """

        self._L = Matrix([sympify(Lagrangian)])
        self.eom = None
        self._m_cd = Matrix()           # Mass Matrix of differentiated coneqs
        self._m_d = Matrix()            # Mass Matrix of dynamic equations
        self._f_cd = Matrix()           # Forcing part of the diff coneqs
        self._f_d = Matrix()            # Forcing part of the dynamic equations
        self.lam_coeffs = Matrix()      # The coeffecients of the multipliers

        forcelist = forcelist if forcelist else []
        if not iterable(forcelist):
            raise TypeError('Force pairs must be supplied in an iterable.')
        self._forcelist = forcelist
        if frame and not isinstance(frame, ReferenceFrame):
            raise TypeError('frame must be a valid ReferenceFrame')
        self._bodies = bodies
        self.inertial = frame

        self.lam_vec = Matrix()

        self._term1 = Matrix()
        self._term2 = Matrix()
        self._term3 = Matrix()
        self._term4 = Matrix()

        # Creating the qs, qdots and qdoubledots
        if not iterable(qs):
            raise TypeError('Generalized coordinates must be an iterable')
        self._q = Matrix(qs)
        self._qdots = self.q.diff(dynamicsymbols._t)
        self._qdoubledots = self._qdots.diff(dynamicsymbols._t)

        mat_build = lambda x: Matrix(x) if x else Matrix()
        hol_coneqs = mat_build(hol_coneqs)
        nonhol_coneqs = mat_build(nonhol_coneqs)
        self.coneqs = Matrix([hol_coneqs.diff(dynamicsymbols._t),
                nonhol_coneqs])
        self._hol_coneqs = hol_coneqs

    def form_lagranges_equations(self):
        """Method to form Lagrange's equations of motion.

        Returns a vector of equations of motion using Lagrange's equations of
        the second kind.
        """

        qds = self._qdots
        qdd_zero = dict((i, 0) for i in self._qdoubledots)
        n = len(self.q)

        # Internally we represent the EOM as four terms:
        # EOM = term1 - term2 - term3 - term4 = 0

        # First term
        self._term1 = self._L.jacobian(qds)
        self._term1 = self._term1.diff(dynamicsymbols._t).T

        # Second term
        self._term2 = self._L.jacobian(self.q).T

        # Third term
        if self.coneqs:
            coneqs = self.coneqs
            m = len(coneqs)
            # Creating the multipliers
            self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1)))
            self.lam_coeffs = -coneqs.jacobian(qds)
            self._term3 = self.lam_coeffs.T * self.lam_vec
            # Extracting the coeffecients of the qdds from the diff coneqs
            diffconeqs = coneqs.diff(dynamicsymbols._t)
            self._m_cd = diffconeqs.jacobian(self._qdoubledots)
            # The remaining terms i.e. the 'forcing' terms in diff coneqs
            self._f_cd = -diffconeqs.subs(qdd_zero)
        else:
            self._term3 = zeros(n, 1)

        # Fourth term
        if self.forcelist:
            N = self.inertial
            self._term4 = zeros(n, 1)
            for i, qd in enumerate(qds):
                flist = zip(*_f_list_parser(self.forcelist, N))
                self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist)
        else:
            self._term4 = zeros(n, 1)

        # Form the dynamic mass and forcing matrices
        without_lam = self._term1 - self._term2 - self._term4
        self._m_d = without_lam.jacobian(self._qdoubledots)
        self._f_d = -without_lam.subs(qdd_zero)

        # Form the EOM
        self.eom = without_lam - self._term3
        return self.eom

    @property
    def mass_matrix(self):
        """Returns the mass matrix, which is augmented by the Lagrange
        multipliers, if necessary.

        If the system is described by 'n' generalized coordinates and there are
        no constraint equations then an n X n matrix is returned.

        If there are 'n' generalized coordinates and 'm' constraint equations
        have been supplied during initialization then an n X (n+m) matrix is
        returned. The (n + m - 1)th and (n + m)th columns contain the
        coefficients of the Lagrange multipliers.
        """

        if self.eom is None:
            raise ValueError('Need to compute the equations of motion first')
        if self.coneqs:
            return (self._m_d).row_join(self.lam_coeffs.T)
        else:
            return self._m_d

    @property
    def mass_matrix_full(self):
        """Augments the coefficients of qdots to the mass_matrix."""

        if self.eom is None:
            raise ValueError('Need to compute the equations of motion first')
        n = len(self.q)
        m = len(self.coneqs)
        row1 = eye(n).row_join(zeros(n, n + m))
        row2 = zeros(n, n).row_join(self.mass_matrix)
        if self.coneqs:
            row3 = zeros(m, n).row_join(self._m_cd).row_join(zeros(m, m))
            return row1.col_join(row2).col_join(row3)
        else:
            return row1.col_join(row2)

    @property
    def forcing(self):
        """Returns the forcing vector from 'lagranges_equations' method."""

        if self.eom is None:
            raise ValueError('Need to compute the equations of motion first')
        return self._f_d

    @property
    def forcing_full(self):
        """Augments qdots to the forcing vector above."""

        if self.eom is None:
            raise ValueError('Need to compute the equations of motion first')
        if self.coneqs:
            return self._qdots.col_join(self.forcing).col_join(self._f_cd)
        else:
            return self._qdots.col_join(self.forcing)

    def to_linearizer(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None):
        """Returns an instance of the Linearizer class, initiated from the
        data in the LagrangesMethod class. This may be more desirable than using
        the linearize class method, as the Linearizer object will allow more
        efficient recalculation (i.e. about varying operating points).

        Parameters
        ==========
        q_ind, qd_ind : array_like, optional
            The independent generalized coordinates and speeds.
        q_dep, qd_dep : array_like, optional
            The dependent generalized coordinates and speeds.
        """

        # Compose vectors
        t = dynamicsymbols._t
        q = self.q
        u = self._qdots
        ud = u.diff(t)
        # Get vector of lagrange multipliers
        lams = self.lam_vec

        mat_build = lambda x: Matrix(x) if x else Matrix()
        q_i = mat_build(q_ind)
        q_d = mat_build(q_dep)
        u_i = mat_build(qd_ind)
        u_d = mat_build(qd_dep)

        # Compose general form equations
        f_c = self._hol_coneqs
        f_v = self.coneqs
        f_a = f_v.diff(t)
        f_0 = u
        f_1 = -u
        f_2 = self._term1
        f_3 = -(self._term2 + self._term4)
        f_4 = -self._term3

        # Check that there are an appropriate number of independent and
        # dependent coordinates
        if len(q_d) != len(f_c) or len(u_d) != len(f_v):
            raise ValueError(("Must supply {:} dependent coordinates, and " +
                    "{:} dependent speeds").format(len(f_c), len(f_v)))
        if set(Matrix([q_i, q_d])) != set(q):
            raise ValueError("Must partition q into q_ind and q_dep, with " +
                    "no extra or missing symbols.")
        if set(Matrix([u_i, u_d])) != set(u):
            raise ValueError("Must partition qd into qd_ind and qd_dep, " +
                    "with no extra or missing symbols.")

        # Find all other dynamic symbols, forming the forcing vector r.
        # Sort r to make it canonical.
        insyms = set(Matrix([q, u, ud, lams]))
        r = list(find_dynamicsymbols(f_3, insyms))
        r.sort(key=default_sort_key)
        # Check for any derivatives of variables in r that are also found in r.
        for i in r:
            if diff(i, dynamicsymbols._t) in r:
                raise ValueError('Cannot have derivatives of specified \
                                 quantities when linearizing forcing terms.')

        return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
                q_d, u_i, u_d, r, lams)

    def linearize(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None,
            **kwargs):
        """Linearize the equations of motion about a symbolic operating point.

        If kwarg A_and_B is False (default), returns M, A, B, r for the
        linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.

        If kwarg A_and_B is True, returns A, B, r for the linearized form
        dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
        computationally intensive if there are many symbolic parameters. For
        this reason, it may be more desirable to use the default A_and_B=False,
        returning M, A, and B. Values may then be substituted in to these
        matrices, and the state space form found as
        A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.

        In both cases, r is found as all dynamicsymbols in the equations of
        motion that are not part of q, u, q', or u'. They are sorted in
        canonical form.

        The operating points may be also entered using the ``op_point`` kwarg.
        This takes a dictionary of {symbol: value}, or a an iterable of such
        dictionaries. The values may be numberic or symbolic. The more values
        you can specify beforehand, the faster this computation will run.

        For more documentation, please see the ``Linearizer`` class."""

        linearizer = self.to_linearizer(q_ind, qd_ind, q_dep, qd_dep)
        result = linearizer.linearize(**kwargs)
        return result + (linearizer.r,)

    def solve_multipliers(self, op_point=None, sol_type='dict'):
        """Solves for the values of the lagrange multipliers symbolically at
        the specified operating point

        Parameters
        ==========
        op_point : dict or iterable of dicts, optional
            Point at which to solve at. The operating point is specified as
            a dictionary or iterable of dictionaries of {symbol: value}. The
            value may be numeric or symbolic itself.

        sol_type : str, optional
            Solution return type. Valid options are:
            - 'dict': A dict of {symbol : value} (default)
            - 'Matrix': An ordered column matrix of the solution
        """

        # Determine number of multipliers
        k = len(self.lam_vec)
        if k == 0:
            raise ValueError("System has no lagrange multipliers to solve for.")
        # Compose dict of operating conditions
        if isinstance(op_point, dict):
            op_point_dict = op_point
        elif iterable(op_point):
            op_point_dict = {}
            for op in op_point:
                op_point_dict.update(op)
        elif op_point is None:
            op_point_dict = {}
        else:
            raise TypeError("op_point must be either a dictionary or an "
                            "iterable of dictionaries.")
        # Compose the system to be solved
        mass_matrix = self.mass_matrix.col_join((-self.lam_coeffs.row_join(
                zeros(k, k))))
        force_matrix = self.forcing.col_join(self._f_cd)
        # Sub in the operating point
        mass_matrix = msubs(mass_matrix, op_point_dict)
        force_matrix = msubs(force_matrix, op_point_dict)
        # Solve for the multipliers
        sol_list = mass_matrix.LUsolve(-force_matrix)[-k:]
        if sol_type == 'dict':
            return dict(zip(self.lam_vec, sol_list))
        elif sol_type == 'Matrix':
            return Matrix(sol_list)
        else:
            raise ValueError("Unknown sol_type {:}.".format(sol_type))

    def rhs(self, inv_method=None, **kwargs):
        """Returns equations that can be solved numerically

        Parameters
        ==========

        inv_method : str
            The specific sympy inverse matrix calculation method to use. For a
            list of valid methods, see
            :meth:`~sympy.matrices.matrices.MatrixBase.inv`
        """

        if inv_method is None:
            self._rhs = self.mass_matrix_full.LUsolve(self.forcing_full)
        else:
            self._rhs = (self.mass_matrix_full.inv(inv_method,
                         try_block_diag=True) * self.forcing_full)
        return self._rhs

    @property
    def q(self):
        return self._q

    @property
    def u(self):
        return self._qdots

    @property
    def bodies(self):
        return self._bodies

    @property
    def forcelist(self):
        return self._forcelist
Esempio n. 6
0
    def linearize(self, op_point=None, A_and_B=False, simplify=False):
        """Linearize the system about the operating point. Note that
        q_op, u_op, qd_op, ud_op must satisfy the equations of motion.
        These may be either symbolic or numeric.

        Parameters
        ----------
        op_point : dict or iterable of dicts, optional
            Dictionary or iterable of dictionaries containing the operating
            point conditions. These will be substituted in to the linearized
            system before the linearization is complete. Leave blank if you
            want a completely symbolic form. Note that any reduction in
            symbols (whether substituted for numbers or expressions with a
            common parameter) will result in faster runtime.

        A_and_B : bool, optional
            If A_and_B=False (default), (M, A, B) is returned for forming
            [M]*[q, u]^T = [A]*[q_ind, u_ind]^T + [B]r. If A_and_B=True,
            (A, B) is returned for forming dx = [A]x + [B]r, where
            x = [q_ind, u_ind]^T.

        simplify : bool, optional
            Determines if returned values are simplified before return.
            For large expressions this may be time consuming. Default is False.

        Potential Issues
        ----------------
            Note that the process of solving with A_and_B=True is
            computationally intensive if there are many symbolic parameters.
            For this reason, it may be more desirable to use the default
            A_and_B=False, returning M, A, and B. More values may then be
            substituted in to these matrices later on. The state space form can
            then be found as A = P.T*M.LUsolve(A), B = P.T*M.LUsolve(B), where
            P = Linearizer.perm_mat.
        """

        # Run the setup if needed:
        if not self._setup_done:
            self._setup()

        # Compose dict of operating conditions
        if isinstance(op_point, dict):
            op_point_dict = op_point
        elif isinstance(op_point, Iterable):
            op_point_dict = {}
            for op in op_point:
                op_point_dict.update(op)
        else:
            op_point_dict = {}

        # Extract dimension variables
        l, m, n, o, s, k = self._dims

        # Rename terms to shorten expressions
        M_qq = self._M_qq
        M_uqc = self._M_uqc
        M_uqd = self._M_uqd
        M_uuc = self._M_uuc
        M_uud = self._M_uud
        M_uld = self._M_uld
        A_qq = self._A_qq
        A_uqc = self._A_uqc
        A_uqd = self._A_uqd
        A_qu = self._A_qu
        A_uuc = self._A_uuc
        A_uud = self._A_uud
        B_u = self._B_u
        C_0 = self._C_0
        C_1 = self._C_1
        C_2 = self._C_2

        # Build up Mass Matrix
        #     |M_qq    0_nxo   0_nxk|
        # M = |M_uqc   M_uuc   0_mxk|
        #     |M_uqd   M_uud   M_uld|
        if o != 0:
            col2 = Matrix([zeros(n, o), M_uuc, M_uud])
        if k != 0:
            col3 = Matrix([zeros(n + m, k), M_uld])
        if n != 0:
            col1 = Matrix([M_qq, M_uqc, M_uqd])
            if o != 0 and k != 0:
                M = col1.row_join(col2).row_join(col3)
            elif o != 0:
                M = col1.row_join(col2)
            else:
                M = col1
        elif k != 0:
            M = col2.row_join(col3)
        else:
            M = col2
        M_eq = msubs(M, op_point_dict)

        # Build up state coefficient matrix A
        #     |(A_qq + A_qu*C_1)*C_0       A_qu*C_2|
        # A = |(A_uqc + A_uuc*C_1)*C_0    A_uuc*C_2|
        #     |(A_uqd + A_uud*C_1)*C_0    A_uud*C_2|
        # Col 1 is only defined if n != 0
        if n != 0:
            r1c1 = A_qq
            if o != 0:
                r1c1 += (A_qu * C_1)
            r1c1 = r1c1 * C_0
            if m != 0:
                r2c1 = A_uqc
                if o != 0:
                    r2c1 += (A_uuc * C_1)
                r2c1 = r2c1 * C_0
            else:
                r2c1 = Matrix()
            if o - m + k != 0:
                r3c1 = A_uqd
                if o != 0:
                    r3c1 += (A_uud * C_1)
                r3c1 = r3c1 * C_0
            else:
                r3c1 = Matrix()
            col1 = Matrix([r1c1, r2c1, r3c1])
        else:
            col1 = Matrix()
        # Col 2 is only defined if o != 0
        if o != 0:
            if n != 0:
                r1c2 = A_qu * C_2
            else:
                r1c2 = Matrix()
            if m != 0:
                r2c2 = A_uuc * C_2
            else:
                r2c2 = Matrix()
            if o - m + k != 0:
                r3c2 = A_uud * C_2
            else:
                r3c2 = Matrix()
            col2 = Matrix([r1c2, r2c2, r3c2])
        else:
            col2 = Matrix()
        if col1:
            if col2:
                Amat = col1.row_join(col2)
            else:
                Amat = col1
        else:
            Amat = col2
        Amat_eq = msubs(Amat, op_point_dict)

        # Build up the B matrix if there are forcing variables
        #     |0_(n + m)xs|
        # B = |B_u        |
        if s != 0 and o - m + k != 0:
            Bmat = zeros(n + m, s).col_join(B_u)
            Bmat_eq = msubs(Bmat, op_point_dict)
        else:
            Bmat_eq = Matrix()

        # kwarg A_and_B indicates to return  A, B for forming the equation
        # dx = [A]x + [B]r, where x = [q_indnd, u_indnd]^T,
        if A_and_B:
            A_cont = self.perm_mat.T * M_eq.LUsolve(Amat_eq)
            if Bmat_eq:
                B_cont = self.perm_mat.T * M_eq.LUsolve(Bmat_eq)
            else:
                # Bmat = Matrix([]), so no need to sub
                B_cont = Bmat_eq
            if simplify:
                A_cont.simplify()
                B_cont.simplify()
            return A_cont, B_cont
        # Otherwise return M, A, B for forming the equation
        # [M]dx = [A]x + [B]r, where x = [q, u]^T
        else:
            if simplify:
                M_eq.simplify()
                Amat_eq.simplify()
                Bmat_eq.simplify()
            return M_eq, Amat_eq, Bmat_eq