def _initialize_kindiffeq_matrices(self, kdeqs): """Initialize the kinematic differential equation matrices.""" if kdeqs: if len(self.q) != len(kdeqs): raise ValueError('There must be an equal number of kinematic ' 'differential equations and coordinates.') kdeqs = Matrix(kdeqs) u = self.u qdot = self._qdot # Dictionaries setting things to zero u_zero = dict((i, 0) for i in u) uaux_zero = dict((i, 0) for i in self._uaux) qdot_zero = dict((i, 0) for i in qdot) f_k = msubs(kdeqs, u_zero, qdot_zero) k_ku = (msubs(kdeqs, qdot_zero) - f_k).jacobian(u) k_kqdot = (msubs(kdeqs, u_zero) - f_k).jacobian(qdot) f_k = k_kqdot.LUsolve(f_k) k_ku = k_kqdot.LUsolve(k_ku) k_kqdot = eye(len(qdot)) self._qdot_u_map = solve_linear_system_LU( Matrix([k_kqdot.T, -(k_ku * u + f_k).T]).T, qdot) self._f_k = msubs(f_k, uaux_zero) self._k_ku = msubs(k_ku, uaux_zero) self._k_kqdot = k_kqdot else: self._qdot_u_map = None self._f_k = Matrix() self._k_ku = Matrix() self._k_kqdot = Matrix()
def forcing_full(self): """The forcing vector of the system, augmented by the kinematic differential equations.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') f1 = self._k_ku * Matrix(self.u) + self._f_k return -Matrix([f1, self._f_d, self._f_dnh])
def test_form_2(): symsystem2 = SymbolicSystem(coordinates, comb_implicit_rhs, speeds=speeds, mass_matrix=comb_implicit_mat, alg_con=alg_con_full, output_eqns=out_eqns, bodies=bodies, loads=loads) assert symsystem2.coordinates == Matrix([x, y, lam]) assert symsystem2.speeds == Matrix([u, v]) assert symsystem2.states == Matrix([x, y, lam, u, v]) assert symsystem2.alg_con == [4] inter = comb_implicit_rhs assert simplify(symsystem2.comb_implicit_rhs - inter) == zeros(5, 1) assert simplify(symsystem2.comb_implicit_mat - comb_implicit_mat) == zeros(5) assert set(symsystem2.dynamic_symbols()) == {y, v, lam, u, x} assert type(symsystem2.dynamic_symbols()) == tuple assert set(symsystem2.constant_symbols()) == {l, g, m} assert type(symsystem2.constant_symbols()) == tuple inter = comb_explicit_rhs symsystem2.compute_explicit_form() assert simplify(symsystem2.comb_explicit_rhs - inter) == zeros(5, 1) assert symsystem2.output_eqns == out_eqns assert symsystem2.bodies == (Pa, ) assert symsystem2.loads == ((P, g * m * N.x), )
def test_n_link_pendulum_on_cart_higher_order(): l0, m0 = symbols("l0 m0") l1, m1 = symbols("l1 m1") m2 = symbols("m2") g = symbols("g") q0, q1, q2 = dynamicsymbols("q0 q1 q2") u0, u1, u2 = dynamicsymbols("u0 u1 u2") F, T1 = dynamicsymbols("F T1") kane1 = models.n_link_pendulum_on_cart(2) massmatrix1 = Matrix([[m0 + m1 + m2, -l0*m1*cos(q1) - l0*m2*cos(q1), -l1*m2*cos(q2)], [-l0*m1*cos(q1) - l0*m2*cos(q1), l0**2*m1 + l0**2*m2, l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2))], [-l1*m2*cos(q2), l0*l1*m2*(sin(q1)*sin(q2) + cos(q1)*cos(q2)), l1**2*m2]]) forcing1 = Matrix([[-l0*m1*u1**2*sin(q1) - l0*m2*u1**2*sin(q1) - l1*m2*u2**2*sin(q2) + F], [g*l0*m1*sin(q1) + g*l0*m2*sin(q1) - l0*l1*m2*(sin(q1)*cos(q2) - sin(q2)*cos(q1))*u2**2], [g*l1*m2*sin(q2) - l0*l1*m2*(-sin(q1)*cos(q2) + sin(q2)*cos(q1))*u1**2]]) assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3) assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
def test_linearize_pendulum_lagrange_nonminimal(): q1, q2 = dynamicsymbols("q1:3") q1d, q2d = dynamicsymbols("q1:3", level=1) L, m, t = symbols("L, m, t") g = 9.8 # Compose World Frame N = ReferenceFrame("N") pN = Point("N*") pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2 / q1) A = N.orientnew("A", "axis", [theta1, N.z]) # Create point P, the pendulum mass P = pN.locatenew("P1", q1 * N.x + q2 * N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle("pP", P, m) # Constraint Equations f_c = Matrix([q1 ** 2 + q2 ** 2 - L ** 2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod( Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m * g * N.x)], frame=N ) LM.form_lagranges_equations() # Compose operating point op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0} # Solve for multiplier operating point lam_op = LM.solve_multipliers(op_point=op_point) op_point.update(lam_op) # Perform the Linearization A, B, inp_vec = LM.linearize( [q2], [q2d], [q1], [q1d], op_point=op_point, A_and_B=True ) assert A == Matrix([[0, 1], [-9.8 / L, 0]]) assert B == Matrix([])
def _rot(axis, angle): """DCM for simple axis 1,2,or 3 rotations. """ if axis == 1: return Matrix( [ [1, 0, 0], [0, cos(angle), -sin(angle)], [0, sin(angle), cos(angle)], ] ) elif axis == 2: return Matrix( [ [cos(angle), 0, sin(angle)], [0, 1, 0], [-sin(angle), 0, cos(angle)], ] ) elif axis == 3: return Matrix( [ [cos(angle), -sin(angle), 0], [sin(angle), cos(angle), 0], [0, 0, 1], ] )
def test_linearize_pendulum_lagrange_minimal(): q1 = dynamicsymbols("q1") # angle of pendulum q1d = dynamicsymbols("q1", 1) # Angular velocity L, m, t = symbols("L, m, t") g = 9.8 # Compose world frame N = ReferenceFrame("N") pN = Point("N*") pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew("A", "axis", [q1, N.z]) A.set_ang_vel(N, q1d * N.z) # Locate point P relative to the origin N* P = pN.locatenew("P", L * A.x) P.v2pt_theory(pN, N, A) pP = Particle("pP", P, m) # Solve for eom with Lagranges method Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m * g * N.x)], frame=N) LM.form_lagranges_equations() # Linearize A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True) assert A == Matrix([[0, 1], [-9.8 * cos(q1) / L, 0]]) assert B == Matrix([])
def test_form_1(): symsystem1 = SymbolicSystem( states, comb_explicit_rhs, alg_con=alg_con_full, output_eqns=out_eqns, coord_idxs=coord_idxs, speed_idxs=speed_idxs, bodies=bodies, loads=loads, ) assert symsystem1.coordinates == Matrix([x, y]) assert symsystem1.speeds == Matrix([u, v]) assert symsystem1.states == Matrix([x, y, u, v, lam]) assert symsystem1.alg_con == [4] inter = comb_explicit_rhs assert simplify(symsystem1.comb_explicit_rhs - inter) == zeros(5, 1) assert set(symsystem1.dynamic_symbols()) == set([y, v, lam, u, x]) assert type(symsystem1.dynamic_symbols()) == tuple assert set(symsystem1.constant_symbols()) == set([l, g, m]) assert type(symsystem1.constant_symbols()) == tuple assert symsystem1.output_eqns == out_eqns assert symsystem1.bodies == (Pa, ) assert symsystem1.loads == ((P, g * m * N.x), )
def test_aux(): # Same as above, except we have 2 auxiliary speeds for the ground contact # point, which is known to be zero. In one case, we go through then # substitute the aux. speeds in at the end (they are zero, as well as their # derivative), in the other case, we use the built-in auxiliary speed part # of KanesMethod. The equations from each should be the same. q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2') u4d, u5d = dynamicsymbols('u4, u5', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) w_R_N_qd = R.ang_vel_in(N) R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) C = Point('C') C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x)) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) Dmc.a2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L] ForceList = [(Dmc, -m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))] BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyList = [BodyD] KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5], kd_eqs=kd) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) (fr, frstar) = KM.kanes_equations(ForceList, BodyList) fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd, u_auxiliary=[u4, u5]) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList) fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) frstar.simplify() frstar2.simplify() assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0]) assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0])
def test_body_dcm(): A = Body('A') B = Body('B') A.frame.orient_axis(B.frame, B.frame.z, 10) assert A.dcm(B) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]]) assert A.dcm(B.frame) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]])
def test_input_format(): # 1 dof problem from test_one_dof q, u = dynamicsymbols("q u") qd, ud = dynamicsymbols("q u", 1) m, c, k = symbols("m c k") N = ReferenceFrame("N") P = Point("P") P.set_vel(N, u * N.x) kd = [qd - u] FL = [(P, (-k * q - c * u) * N.x)] pa = Particle("pa", P, m) BL = [pa] KM = KanesMethod(N, [q], [u], kd) # test for input format kane.kanes_equations((body1, body2, particle1)) assert KM.kanes_equations(BL)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=(load1,load2)) assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=None) assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body 2)) assert KM.kanes_equations(BL)[0] == Matrix([0]) # test for error raised when a wrong force list (in this case a string) is provided from sympy.testing.pytest import raises raises(ValueError, lambda: KM._form_fr("bad input")) # 2 dof problem from test_two_dof q1, q2, u1, u2 = dynamicsymbols("q1 q2 u1 u2") q1d, q2d, u1d, u2d = dynamicsymbols("q1 q2 u1 u2", 1) m, c1, c2, k1, k2 = symbols("m c1 c2 k1 k2") N = ReferenceFrame("N") P1 = Point("P1") P2 = Point("P2") P1.set_vel(N, u1 * N.x) P2.set_vel(N, (u1 + u2) * N.x) kd = [q1d - u1, q2d - u2] FL = ( (P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * q2 - c2 * u2) * N.x), ) pa1 = Particle("pa1", P1, m) pa2 = Particle("pa2", P2, m) BL = (pa1, pa2) KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd) # test for input format # kane.kanes_equations((body1, body2), (load1, load2)) KM.kanes_equations(BL, FL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand( (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) / m) assert expand(rhs[1]) == expand( (k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m)
def test_multi_mass_spring_damper_higher_order(): c0, k0, m0 = symbols("c0 k0 m0") c1, k1, m1 = symbols("c1 k1 m1") c2, k2, m2 = symbols("c2 k2 m2") v0, x0 = dynamicsymbols("v0 x0") v1, x1 = dynamicsymbols("v1 x1") v2, x2 = dynamicsymbols("v2 x2") kane1 = models.multi_mass_spring_damper(3) massmatrix1 = Matrix([[m0 + m1 + m2, m1 + m2, m2], [m1 + m2, m1 + m2, m2], [m2, m2, m2]]) forcing1 = Matrix([[-c0 * v0 - k0 * x0], [-c1 * v1 - k1 * x1], [-c2 * v2 - k2 * x2]]) assert simplify(massmatrix1 - kane1.mass_matrix) == zeros(3) assert simplify(forcing1 - kane1.forcing) == Matrix([0, 0, 0])
def test_one_dof(): # This is for a 1 dof spring-mass-damper case. # It is described in more detail in the KanesMethod docstring. q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u', 1) m, c, k = symbols('m c k') N = ReferenceFrame('N') P = Point('P') P.set_vel(N, u * N.x) kd = [qd - u] FL = [(P, (-k * q - c * u) * N.x)] pa = Particle('pa', P, m) BL = [pa] KM = KanesMethod(N, [q], [u], kd) KM.kanes_equations(BL, FL) assert KM.bodies == BL MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand(-(q * k + u * c) / m) assert simplify(KM.rhs() - KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros( 2, 1) assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k / m, -c / m]]))
def __init__(self, inlist): """This is the constructor for the Vector class. You shouldn't be calling this, it should only be used by other functions. You should be treating Vectors like you would with if you were doing the math by hand, and getting the first 3 from the standard basis vectors from a ReferenceFrame. The only exception is to create a zero vector: zv = Vector(0) """ self.args = [] if inlist == 0: inlist = [] if isinstance(inlist, dict): d = inlist else: d = {} for inp in inlist: if inp[1] in d: d[inp[1]] += inp[0] else: d[inp[1]] = inp[0] for k, v in d.items(): if v != Matrix([0, 0, 0]): self.args.append((v, k))
def test_one_dof(): # This is for a 1 dof spring-mass-damper case. # It is described in more detail in the KanesMethod docstring. q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u', 1) m, c, k = symbols('m c k') N = ReferenceFrame('N') P = Point('P') P.set_vel(N, u * N.x) kd = [qd - u] FL = [(P, (-k * q - c * u) * N.x)] pa = Particle('pa', P, m) BL = [pa] KM = KanesMethod(N, [q], [u], kd) # The old input format raises a deprecation warning, so catch it here so # it doesn't cause py.test to fail. with warns_deprecated_sympy(): KM.kanes_equations(FL, BL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand(-(q * k + u * c) / m) assert simplify(KM.rhs() - KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros( 2, 1) assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k / m, -c / m]]))
def __init__(self, inlist): """This is the constructor for the Vector class. You shouldn't be calling this, it should only be used by other functions. You should be treating Vectors like you would with if you were doing the math by hand, and getting the first 3 from the standard basis vectors from a ReferenceFrame. The only exception is to create a zero vector: zv = Vector(0) """ self.args = [] if inlist == 0: inlist = [] while len(inlist) != 0: added = 0 for i, v in enumerate(self.args): if inlist[0][1] == self.args[i][1]: self.args[i] = (self.args[i][0] + inlist[0][0], inlist[0][1]) inlist.remove(inlist[0]) added = 1 break if added != 1: self.args.append(inlist[0]) inlist.remove(inlist[0]) i = 0 # This code is to remove empty frames from the list while i < len(self.args): if self.args[i][0] == Matrix([0, 0, 0]): self.args.remove(self.args[i]) i -= 1 i += 1
def _w_diff_dcm(self, otherframe): """Angular velocity from time differentiating the DCM. """ from sympy.physics.vector.functions import dynamicsymbols dcm2diff = otherframe.dcm(self) diffed = dcm2diff.diff(dynamicsymbols._t) angvelmat = diffed * dcm2diff.T w1 = trigsimp(expand(angvelmat[7]), recursive=True) w2 = trigsimp(expand(angvelmat[2]), recursive=True) w3 = trigsimp(expand(angvelmat[3]), recursive=True) return Vector([(Matrix([w1, w2, w3]), otherframe)])
def test_form_3(): symsystem3 = SymbolicSystem( states, dyn_implicit_rhs, mass_matrix=dyn_implicit_mat, coordinate_derivatives=kin_explicit_rhs, alg_con=alg_con, coord_idxs=coord_idxs, speed_idxs=speed_idxs, bodies=bodies, loads=loads, ) assert symsystem3.coordinates == Matrix([x, y]) assert symsystem3.speeds == Matrix([u, v]) assert symsystem3.states == Matrix([x, y, u, v, lam]) assert symsystem3.alg_con == [4] inter1 = kin_explicit_rhs inter2 = dyn_implicit_rhs assert simplify(symsystem3.kin_explicit_rhs - inter1) == zeros(2, 1) assert simplify(symsystem3.dyn_implicit_mat - dyn_implicit_mat) == zeros(3) assert simplify(symsystem3.dyn_implicit_rhs - inter2) == zeros(3, 1) inter = comb_implicit_rhs assert simplify(symsystem3.comb_implicit_rhs - inter) == zeros(5, 1) assert simplify(symsystem3.comb_implicit_mat - comb_implicit_mat) == zeros(5) inter = comb_explicit_rhs symsystem3.compute_explicit_form() assert simplify(symsystem3.comb_explicit_rhs - inter) == zeros(5, 1) assert set(symsystem3.dynamic_symbols()) == set([y, v, lam, u, x]) assert type(symsystem3.dynamic_symbols()) == tuple assert set(symsystem3.constant_symbols()) == set([l, g, m]) assert type(symsystem3.constant_symbols()) == tuple assert symsystem3.output_eqns == {} assert symsystem3.bodies == (Pa, ) assert symsystem3.loads == ((P, g * m * N.x), )
def form_lagranges_equations(self): """Method to form Lagrange's equations of motion. Returns a vector of equations of motion using Lagrange's equations of the second kind. """ qds = self._qdots qdd_zero = dict((i, 0) for i in self._qdoubledots) n = len(self.q) # Internally we represent the EOM as four terms: # EOM = term1 - term2 - term3 - term4 = 0 # First term self._term1 = self._L.jacobian(qds) self._term1 = self._term1.diff(dynamicsymbols._t).T # Second term self._term2 = self._L.jacobian(self.q).T # Third term if self.coneqs: coneqs = self.coneqs m = len(coneqs) # Creating the multipliers self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1))) self.lam_coeffs = -coneqs.jacobian(qds) self._term3 = self.lam_coeffs.T * self.lam_vec # Extracting the coeffecients of the qdds from the diff coneqs diffconeqs = coneqs.diff(dynamicsymbols._t) self._m_cd = diffconeqs.jacobian(self._qdoubledots) # The remaining terms i.e. the 'forcing' terms in diff coneqs self._f_cd = -diffconeqs.subs(qdd_zero) else: self._term3 = zeros(n, 1) # Fourth term if self.forcelist: N = self.inertial self._term4 = zeros(n, 1) for i, qd in enumerate(qds): flist = zip(*_f_list_parser(self.forcelist, N)) self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist) else: self._term4 = zeros(n, 1) # Form the dynamic mass and forcing matrices without_lam = self._term1 - self._term2 - self._term4 self._m_d = without_lam.jacobian(self._qdoubledots) self._f_d = -without_lam.subs(qdd_zero) # Form the EOM self.eom = without_lam - self._term3 return self.eom
def test_find_dynamicsymbols(): a, b = symbols('a, b') x, y, z = dynamicsymbols('x, y, z') expr = Matrix([[a * x + b, x * y.diff() + y], [x.diff().diff(), z + sin(z.diff())]]) # Test finding all dynamicsymbols sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()} assert find_dynamicsymbols(expr) == sol # Test finding all but those in sym_list exclude = [x, y, z] sol = {y.diff(), x.diff().diff(), z.diff()} assert find_dynamicsymbols(expr, exclude) == sol
def test_msubs(): a, b = symbols('a, b') x, y, z = dynamicsymbols('x, y, z') # Test simple substitution expr = Matrix([[a * x + b, x * y.diff() + y], [x.diff().diff(), z + sin(z.diff())]]) sol = Matrix([[a + b, y], [x.diff().diff(), 1]]) sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0} assert msubs(expr, sd) == sol # Test smart substitution expr = cos(x + y) * tan(x + y) + b * x.diff() sd = {x: 0, y: pi / 2, x.diff(): 1} assert msubs(expr, sd, smart=True) == b + 1 N = ReferenceFrame('N') v = x * N.x + y * N.y d = x * (N.x | N.x) + y * (N.y | N.y) v_sol = 1 * N.y d_sol = 1 * (N.y | N.y) sd = {x: 0, y: 1} assert msubs(v, sd) == v_sol assert msubs(d, sd) == d_sol
def _w_diff_dcm(self, otherframe): """Angular velocity from time differentiating the DCM. """ from sympy.physics.vector.functions import dynamicsymbols dcm2diff = self.dcm(otherframe) diffed = dcm2diff.diff(dynamicsymbols._t) # angvelmat = diffed * dcm2diff.T # This one seems to produce the correct result when I checked using Autolev. angvelmat = dcm2diff * diffed.T w1 = trigsimp(expand(angvelmat[7]), recursive=True) w2 = trigsimp(expand(angvelmat[2]), recursive=True) w3 = trigsimp(expand(angvelmat[3]), recursive=True) return -Vector([(Matrix([w1, w2, w3]), self)])
def _form_permutation_matrices(self): """Form the permutation matrices Pq and Pu.""" # Extract dimension variables l, m, n, o, s, k = self._dims # Compute permutation matrices if n != 0: self._Pq = permutation_matrix(self.q, Matrix([self.q_i, self.q_d])) if l > 0: self._Pqi = self._Pq[:, :-l] self._Pqd = self._Pq[:, -l:] else: self._Pqi = self._Pq self._Pqd = Matrix() if o != 0: self._Pu = permutation_matrix(self.u, Matrix([self.u_i, self.u_d])) if m > 0: self._Pui = self._Pu[:, :-m] self._Pud = self._Pu[:, -m:] else: self._Pui = self._Pu self._Pud = Matrix() # Compute combination permutation matrix for computing A and B P_col1 = Matrix([self._Pqi, zeros(o + k, n - l)]) P_col2 = Matrix([zeros(n, o - m), self._Pui, zeros(k, o - m)]) if P_col1: if P_col2: self.perm_mat = P_col1.row_join(P_col2) else: self.perm_mat = P_col1 else: self.perm_mat = P_col2
def _initialize_vectors(self, q_ind, q_dep, u_ind, u_dep, u_aux): """Initialize the coordinate and speed vectors.""" none_handler = lambda x: Matrix(x) if x else Matrix() # Initialize generalized coordinates q_dep = none_handler(q_dep) if not iterable(q_ind): raise TypeError('Generalized coordinates must be an iterable.') if not iterable(q_dep): raise TypeError('Dependent coordinates must be an iterable.') q_ind = Matrix(q_ind) self._qdep = q_dep self._q = Matrix([q_ind, q_dep]) self._qdot = self.q.diff(dynamicsymbols._t) # Initialize generalized speeds u_dep = none_handler(u_dep) if not iterable(u_ind): raise TypeError('Generalized speeds must be an iterable.') if not iterable(u_dep): raise TypeError('Dependent speeds must be an iterable.') u_ind = Matrix(u_ind) self._udep = u_dep self._u = Matrix([u_ind, u_dep]) self._udot = self.u.diff(dynamicsymbols._t) self._uaux = none_handler(u_aux)
def test_input_format(): # 1 dof problem from test_one_dof q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u', 1) m, c, k = symbols('m c k') N = ReferenceFrame('N') P = Point('P') P.set_vel(N, u * N.x) kd = [qd - u] FL = [(P, (-k * q - c * u) * N.x)] pa = Particle('pa', P, m) BL = [pa] KM = KanesMethod(N, [q], [u], kd) # test for input format kane.kanes_equations((body1, body2, particle1)) assert KM.kanes_equations(BL)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=(load1,load2)) assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=None) assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body 2)) assert KM.kanes_equations(BL)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body2), loads=[]) assert KM.kanes_equations(BL, [])[0] == Matrix([0]) # test for error raised when a wrong force list (in this case a string) is provided raises(ValueError, lambda: KM._form_fr('bad input')) # 1 dof problem from test_one_dof with FL & BL in instance KM = KanesMethod(N, [q], [u], kd, bodies=BL, forcelist=FL) assert KM.kanes_equations()[0] == Matrix([-c*u - k*q]) # 2 dof problem from test_two_dof q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2') q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1) m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2') N = ReferenceFrame('N') P1 = Point('P1') P2 = Point('P2') P1.set_vel(N, u1 * N.x) P2.set_vel(N, (u1 + u2) * N.x) kd = [q1d - u1, q2d - u2] FL = ((P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * q2 - c2 * u2) * N.x)) pa1 = Particle('pa1', P1, m) pa2 = Particle('pa2', P2, m) BL = (pa1, pa2) KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd) # test for input format # kane.kanes_equations((body1, body2), (load1, load2)) KM.kanes_equations(BL, FL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m) assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m)
def to_matrix(self, reference_frame, second_reference_frame=None): """Returns the matrix form of the dyadic with respect to one or two reference frames. Parameters ---------- reference_frame : ReferenceFrame The reference frame that the rows and columns of the matrix correspond to. If a second reference frame is provided, this only corresponds to the rows of the matrix. second_reference_frame : ReferenceFrame, optional, default=None The reference frame that the columns of the matrix correspond to. Returns ------- matrix : ImmutableMatrix, shape(3,3) The matrix that gives the 2D tensor form. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame, Vector >>> Vector.simp = True >>> from sympy.physics.mechanics import inertia >>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz') >>> N = ReferenceFrame('N') >>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz) >>> inertia_dyadic.to_matrix(N) Matrix([ [Ixx, Ixy, Ixz], [Ixy, Iyy, Iyz], [Ixz, Iyz, Izz]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> inertia_dyadic.to_matrix(A) Matrix([ [ Ixx, Ixy*cos(beta) + Ixz*sin(beta), -Ixy*sin(beta) + Ixz*cos(beta)], [ Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Iyz*sin(2*beta) - Izz*cos(2*beta)/2 + Izz/2, -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2], [-Ixy*sin(beta) + Ixz*cos(beta), -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Iyz*sin(2*beta) + Izz*cos(2*beta)/2 + Izz/2]]) """ if second_reference_frame is None: second_reference_frame = reference_frame return Matrix([ i.dot(self).dot(j) for i in reference_frame for j in second_reference_frame ]).reshape(3, 3)
def solve_multipliers(self, op_point=None, sol_type="dict"): """Solves for the values of the lagrange multipliers symbolically at the specified operating point Parameters ========== op_point : dict or iterable of dicts, optional Point at which to solve at. The operating point is specified as a dictionary or iterable of dictionaries of {symbol: value}. The value may be numeric or symbolic itself. sol_type : str, optional Solution return type. Valid options are: - 'dict': A dict of {symbol : value} (default) - 'Matrix': An ordered column matrix of the solution """ # Determine number of multipliers k = len(self.lam_vec) if k == 0: raise ValueError("System has no lagrange multipliers to solve for.") # Compose dict of operating conditions if isinstance(op_point, dict): op_point_dict = op_point elif iterable(op_point): op_point_dict = {} for op in op_point: op_point_dict.update(op) elif op_point is None: op_point_dict = {} else: raise TypeError( "op_point must be either a dictionary or an " "iterable of dictionaries." ) # Compose the system to be solved mass_matrix = self.mass_matrix.col_join( (-self.lam_coeffs.row_join(zeros(k, k))) ) force_matrix = self.forcing.col_join(self._f_cd) # Sub in the operating point mass_matrix = msubs(mass_matrix, op_point_dict) force_matrix = msubs(force_matrix, op_point_dict) # Solve for the multipliers sol_list = mass_matrix.LUsolve(-force_matrix)[-k:] if sol_type == "dict": return dict(zip(self.lam_vec, sol_list)) elif sol_type == "Matrix": return Matrix(sol_list) else: raise ValueError("Unknown sol_type {:}.".format(sol_type))
def test_linearize_pendulum_kane_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum u1 = dynamicsymbols('u1') # Angular velocity q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, u1 * N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L * A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Create Kinematic Differential Equations kde = Matrix([q1d - u1]) # Input the force resultant at P R = m * g * N.x # Solve for eom with kanes method KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) (fr, frstar) = KM.kanes_equations([(P, R)], [pP]) # Linearize A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True) assert A == Matrix([[0, 1], [-9.8 * cos(q1) / L, 0]]) assert B == Matrix([])
def test_linearize_pendulum_kane_minimal(): q1 = dynamicsymbols("q1") # angle of pendulum u1 = dynamicsymbols("u1") # Angular velocity q1d = dynamicsymbols("q1", 1) # Angular velocity L, m, t = symbols("L, m, t") g = 9.8 # Compose world frame N = ReferenceFrame("N") pN = Point("N*") pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew("A", "axis", [q1, N.z]) A.set_ang_vel(N, u1 * N.z) # Locate point P relative to the origin N* P = pN.locatenew("P", L * A.x) P.v2pt_theory(pN, N, A) pP = Particle("pP", P, m) # Create Kinematic Differential Equations kde = Matrix([q1d - u1]) # Input the force resultant at P R = m * g * N.x # Solve for eom with kanes method KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde) with warns_deprecated_sympy(): (fr, frstar) = KM.kanes_equations([(P, R)], [pP]) # Linearize A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True) assert A == Matrix([[0, 1], [-9.8 * cos(q1) / L, 0]]) assert B == Matrix([])
def test_linearize_rolling_disc_lagrange(): q1, q2, q3 = q = dynamicsymbols("q1 q2 q3") q1d, q2d, q3d = qd = dynamicsymbols("q1 q2 q3", 1) r, m, g = symbols("r m g") N = ReferenceFrame("N") Y = N.orientnew("Y", "Axis", [q1, N.z]) L = Y.orientnew("L", "Axis", [q2, Y.x]) R = L.orientnew("R", "Axis", [q3, L.y]) C = Point("C") C.set_vel(N, 0) Dmc = C.locatenew("Dmc", r * L.z) Dmc.v2pt_theory(C, N, R) I = inertia(L, m / 4 * r ** 2, m / 2 * r ** 2, m / 4 * r ** 2) BodyD = RigidBody("BodyD", Dmc, R, m, (I, Dmc)) BodyD.potential_energy = -m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) l = LagrangesMethod(Lag, q) l.form_lagranges_equations() # Linearize about steady-state upright rolling op_point = { q1: 0, q2: 0, q3: 0, q1d: 0, q2d: 0, q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0, } A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0] sol = Matrix( [ [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -6 * q3d, 0], [0, -4 * g / (5 * r), 0, 6 * q3d / 5, 0, 0], [0, 0, 0, 0, 0, 0], ] ) assert A == sol