Esempio n. 1
0
def Distorted_manifold_with_scalar_function():
    Print_Function()
    coords = symbols('x y z')
    (ex, ey, ez, grad) = MV.setup('ex ey ez', metric='[1,1,1]', coords=coords)
    mfvar = (u, v) = symbols('u v')
    X = 2 * u * ex + 2 * v * ey + (u**3 + v**3 / 2) * ez
    MF = Manifold(X, mfvar, I=MV.I)

    (eu, ev) = MF.Basis()

    g = (v + 1) * log(u)
    dg = MF.Grad(g)
    print('g =', g)
    print('dg =', dg)
    print('dg(1,0) =', dg.subs({u: 1, v: 0}))
    G = u * eu + v * ev
    dG = MF.Grad(G)
    print('G =', G)
    print('P(G) =', MF.Proj(G))
    print('zcoef =', simplify(2 * (u**2 + v**2) * (-4 * u**2 - 4 * v**2 - 1)))
    print('dG =', dG)
    print('P(dG) =', MF.Proj(dG))
    PS = u * v * eu ^ ev
    print('PS =', PS)
    print('dPS =', MF.Grad(PS))
    print('P(dPS) =', MF.Proj(MF.Grad(PS)))
    return
Esempio n. 2
0
def Plot_Mobius_Strip_Manifold():
    coords = symbols('x y z')
    (ex, ey, ez, grad) = MV.setup('ex ey ez', metric='[1,1,1]', coords=coords)
    mfvar = (u, v) = symbols('u v')
    X = (cos(u) + v * cos(u / 2) * cos(u)) * ex + (
        sin(u) + v * cos(u / 2) * sin(u)) * ey + v * sin(u / 2) * ez
    MF = Manifold(X, mfvar, True, I=MV.I)
    MF.Plot2DSurface([0.0, 6.28, 48], [-0.3, 0.3, 12],
                     surf=False,
                     skip=[4, 4],
                     tan=0.15)
    return
Esempio n. 3
0
def Simple_manifold_with_scalar_function_derivative():
    coords = (x, y, z) = symbols('x y z')
    basis = (e1, e2, e3, grad) = MV.setup('e_1 e_2 e_3',
                                          metric='[1,1,1]',
                                          coords=coords)
    # Define surface
    mfvar = (u, v) = symbols('u v')
    X = u * e1 + v * e2 + (u**2 + v**2) * e3
    print X
    MF = Manifold(X, mfvar)

    # Define field on the surface.
    g = (v + 1) * log(u)

    # Method 1: Using old Manifold routines.
    VectorDerivative = (MF.rbasis[0] / MF.E_sq) * diff(
        g, u) + (MF.rbasis[1] / MF.E_sq) * diff(g, v)
    print 'Vector derivative =', VectorDerivative.subs({u: 1, v: 0})

    # Method 2: Using new Manifold routines.
    dg = MF.Grad(g)
    print 'Vector derivative =', dg.subs({u: 1, v: 0})
    return