def Distorted_manifold_with_scalar_function(): Print_Function() coords = symbols('x y z') (ex, ey, ez, grad) = MV.setup('ex ey ez', metric='[1,1,1]', coords=coords) mfvar = (u, v) = symbols('u v') X = 2 * u * ex + 2 * v * ey + (u**3 + v**3 / 2) * ez MF = Manifold(X, mfvar, I=MV.I) (eu, ev) = MF.Basis() g = (v + 1) * log(u) dg = MF.Grad(g) print('g =', g) print('dg =', dg) print('dg(1,0) =', dg.subs({u: 1, v: 0})) G = u * eu + v * ev dG = MF.Grad(G) print('G =', G) print('P(G) =', MF.Proj(G)) print('zcoef =', simplify(2 * (u**2 + v**2) * (-4 * u**2 - 4 * v**2 - 1))) print('dG =', dG) print('P(dG) =', MF.Proj(dG)) PS = u * v * eu ^ ev print('PS =', PS) print('dPS =', MF.Grad(PS)) print('P(dPS) =', MF.Proj(MF.Grad(PS))) return
def Plot_Mobius_Strip_Manifold(): coords = symbols('x y z') (ex, ey, ez, grad) = MV.setup('ex ey ez', metric='[1,1,1]', coords=coords) mfvar = (u, v) = symbols('u v') X = (cos(u) + v * cos(u / 2) * cos(u)) * ex + ( sin(u) + v * cos(u / 2) * sin(u)) * ey + v * sin(u / 2) * ez MF = Manifold(X, mfvar, True, I=MV.I) MF.Plot2DSurface([0.0, 6.28, 48], [-0.3, 0.3, 12], surf=False, skip=[4, 4], tan=0.15) return
def Simple_manifold_with_scalar_function_derivative(): coords = (x, y, z) = symbols('x y z') basis = (e1, e2, e3, grad) = MV.setup('e_1 e_2 e_3', metric='[1,1,1]', coords=coords) # Define surface mfvar = (u, v) = symbols('u v') X = u * e1 + v * e2 + (u**2 + v**2) * e3 print X MF = Manifold(X, mfvar) # Define field on the surface. g = (v + 1) * log(u) # Method 1: Using old Manifold routines. VectorDerivative = (MF.rbasis[0] / MF.E_sq) * diff( g, u) + (MF.rbasis[1] / MF.E_sq) * diff(g, v) print 'Vector derivative =', VectorDerivative.subs({u: 1, v: 0}) # Method 2: Using new Manifold routines. dg = MF.Grad(g) print 'Vector derivative =', dg.subs({u: 1, v: 0}) return