Esempio n. 1
0
def e_ik(itab, ktab, star=0):
    """
    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import e_ik
        sage: e_ik([[1,2,3]], [[1,2,3]])
        [1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
        sage: e_ik([[1,2,3]], [[1,2,3]], star=1)
        [1, 2] + [2, 1]
    """
    it = Tableau(itab)
    kt = Tableau(ktab)
    if star:
        it = it.restrict(it.size() - star)
        kt = kt.restrict(kt.size() - star)

    if it.shape() != kt.shape():
        raise ValueError, "the two tableaux must be of the same shape"

    mult = permutation_options['mult']
    permutation_options['mult'] = 'l2r'
    
    if kt == it:
        res =  e(it)
    elif (it, kt) in e_ik_cache:
        res = e_ik_cache[(it,kt)]
    else:
        pi = pi_ik(it,kt)
        e_ik_cache[(it,kt)] = e(it)*pi
        res = e_ik_cache[(it,kt)]

    permutation_options['mult'] = mult    
    return res
Esempio n. 2
0
def epsilon(tab, star=0):
    """
    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import epsilon
        sage: epsilon([[1,2]])
        1/2*[1, 2] + 1/2*[2, 1]
        sage: epsilon([[1],[2]])
        1/2*[1, 2] - 1/2*[2, 1]
    """
    t = Tableau(tab)

    if star:
        t = t.restrict(t.size() - star)

    mult = permutation_options['mult']
    permutation_options['mult'] = 'l2r'
    
    if t in epsilon_cache:
        res = epsilon_cache[t]
    else:
        if t.size() == 2:
            epsilon_cache[t] = e(t)*(1/kappa(t.shape()))
            res =  epsilon_cache[t]
        elif t == Tableau([[1]]):
            epsilon_cache[t] = e(t)
            res =  epsilon_cache[t]
        else:
            epsilon_cache[t] =  epsilon(t, 1)*e(t)*epsilon(t,1)*( 1 / kappa(t.shape()))
            res = epsilon_cache[t]

    permutation_options['mult'] = mult
    return res
Esempio n. 3
0
def epsilon_ik(itab, ktab, star=0):
    """
    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import epsilon_ik
        sage: epsilon_ik([[1,2],[3]], [[1,3],[2]])
        1/4*[1, 3, 2] - 1/4*[2, 3, 1] + 1/4*[3, 1, 2] - 1/4*[3, 2, 1]
        sage: epsilon_ik([[1,2],[3]], [[1,3],[2]], star=1)
        Traceback (most recent call last):
        ...
        ValueError: the two tableaux must be of the same shape
    """
    it = Tableau(itab)
    kt = Tableau(ktab)
    if star:
        it = it.restrict(it.size() - star)
        kt = kt.restrict(kt.size() - star)

    if it.shape() != kt.shape():
        raise ValueError, "the two tableaux must be of the same shape"

    mult = permutation_options['mult']
    permutation_options['mult'] = 'l2r'
    if kt == it:
        res = epsilon(itab)
    elif (it, kt) in epsilon_ik_cache:
        res =  epsilon_ik_cache[(it,kt)]
    else:
        epsilon_ik_cache[(it,kt)] = epsilon(it, star+1)*e_ik(it,kt,star)*epsilon(kt, star+1) * (1/kappa(it.shape()))
        res =  epsilon_ik_cache[(it,kt)]

    permutation_options['mult'] = mult
    return res
Esempio n. 4
0
def e_hat(tab, star=0):
    """
    The Young projection operator, an idempotent in the rational group algebra.

    EXAMPLES::
    
        sage: from sage.combinat.symmetric_group_algebra import e_hat
        sage: e_hat([[1,2,3]])
        1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
        sage: e_hat([[1],[2]])
        1/2*[1, 2] - 1/2*[2, 1]

    There are differing conventions for the order of the symmetrizers
    and antisymmetrizers.  This example illustrates our conventions::

        sage: e_hat([[1,2],[3]])
        1/3*[1, 2, 3] + 1/3*[2, 1, 3] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1]
    """
    t = Tableau(tab)
    if star:
        t = t.restrict(t.size()-star)
    if t in ehat_cache:
        res = ehat_cache[t]
    else:
        res = (1/kappa(t.shape()))*e(t)
    return res
Esempio n. 5
0
def e_hat(tab, star=0):
    """
    The Young projection operator corresponding to the Young tableau
    ``tab`` (which is supposed to contain every integer from `1` to
    its size precisely once, but may and may not be standard). This
    is an idempotent in the rational group algebra.

    EXAMPLES::

        sage: from sage.combinat.symmetric_group_algebra import e_hat
        sage: e_hat([[1,2,3]])
        1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
        sage: e_hat([[1],[2]])
        1/2*[1, 2] - 1/2*[2, 1]

    There are differing conventions for the order of the symmetrizers
    and antisymmetrizers.  This example illustrates our conventions::

        sage: e_hat([[1,2],[3]])
        1/3*[1, 2, 3] + 1/3*[2, 1, 3] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1]
    """
    t = Tableau(tab)
    if star:
        t = t.restrict(t.size() - star)
    if t in ehat_cache:
        res = ehat_cache[t]
    else:
        res = (1 / kappa(t.shape())) * e(t)
    return res
Esempio n. 6
0
def e_hat(tab, star=0):
    """
    The Young projection operator corresponding to the Young tableau
    ``tab`` (which is supposed to contain every integer from `1` to
    its size precisely once, but may and may not be standard). This
    is an idempotent in the rational group algebra.

    EXAMPLES::

        sage: from sage.combinat.symmetric_group_algebra import e_hat
        sage: e_hat([[1,2,3]])
        1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
        sage: e_hat([[1],[2]])
        1/2*[1, 2] - 1/2*[2, 1]

    There are differing conventions for the order of the symmetrizers
    and antisymmetrizers.  This example illustrates our conventions::

        sage: e_hat([[1,2],[3]])
        1/3*[1, 2, 3] + 1/3*[2, 1, 3] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1]
    """
    t = Tableau(tab)
    if star:
        t = t.restrict(t.size()-star)
    if t in ehat_cache:
        res = ehat_cache[t]
    else:
        res = (1/kappa(t.shape()))*e(t)
    return res
Esempio n. 7
0
    def epsilon_ik(self, itab, ktab, star=0):
        """
        Return the seminormal basis element of ``self`` corresponding to the
        pair of tableaux ``itab`` and ``ktab``.

        EXAMPLES::

            sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
            sage: a = QS3.epsilon_ik([[1,2,3]], [[1,2,3]]); a
            1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
            sage: QS3.dft()*vector(a)
            (1, 0, 0, 0, 0, 0)
            sage: a = QS3.epsilon_ik([[1,2],[3]], [[1,2],[3]]); a
            1/3*[1, 2, 3] - 1/6*[1, 3, 2] + 1/3*[2, 1, 3] - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] - 1/6*[3, 2, 1]
            sage: QS3.dft()*vector(a)
            (0, 0, 0, 0, 1, 0)
        """
        it = Tableau(itab)
        kt = Tableau(ktab)

        stn = StandardTableaux_size(self.n)

        if it not in stn:
            raise TypeError("it must be a standard tableau of size %s" %
                            self.n)

        if kt not in stn:
            raise TypeError("kt must be a standard tableau of size %s" %
                            self.n)

        if it.shape() != kt.shape():
            raise ValueError("it and kt must be of the same shape")

        BR = self.base_ring()
        z_elts = {}
        epik = epsilon_ik(it, kt, star=star)
        for m, c in epik._monomial_coefficients.iteritems():
            z_elts[m] = BR(c)
        z = self._from_dict(z_elts)

        if permutation_options['mult'] == 'l2r':
            return z
        else:
            return z.map_support(lambda x: x.inverse())
Esempio n. 8
0
    def epsilon_ik(self, itab, ktab, star=0):
        """
        Returns the seminormal basis element of self corresponding to the
        pair of tableaux itab and ktab.
        
        EXAMPLES::
        
            sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
            sage: a = QS3.epsilon_ik([[1,2,3]], [[1,2,3]]); a
            1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
            sage: QS3.dft()*vector(a)
            (1, 0, 0, 0, 0, 0)
            sage: a = QS3.epsilon_ik([[1,2],[3]], [[1,2],[3]]); a
            1/3*[1, 2, 3] - 1/6*[1, 3, 2] + 1/3*[2, 1, 3] - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] - 1/6*[3, 2, 1]
            sage: QS3.dft()*vector(a)
            (0, 0, 0, 0, 1, 0)
        """
        it = Tableau(itab)
        kt = Tableau(ktab)

        stn = StandardTableaux_n(self.n)

        if it not in stn:
            raise TypeError, "it must be a standard tableaux of size %s"%self.n

        if kt not in stn:
            raise TypeError, "kt must be a standard tableaux of size %s"%self.n

        if it.shape() != kt.shape():
            raise ValueError, "it and kt must be of the same shape"

        BR = self.base_ring()
        z_elts = {}
        epik = epsilon_ik(it, kt, star=star)
        for m,c in epik._monomial_coefficients.iteritems():
            z_elts[m] = BR(c)
        z = self._from_dict(z_elts)

        if permutation.PermutationOptions()['mult'] == 'l2r':
            return z
        else:
            return z.map_support(lambda x: x.inverse())