Esempio n. 1
0
def main():
    vx = 0
    vy = 0
    vz = 0
    rot = 0
    vel = 30
    RED_MIN = np.array([0, 0, 90], np.uint8)
    RED_MAX = np.array([50, 255, 150], np.uint8)

    tello = Tello('', 9005)
    time.sleep(2)
    print(tello.get_battery())
    #tello.takeoff()

    while (True):
        frame = tello.get_image()
        #print("height = {}, width = {}".format(frame.shape[0], frame.shape[1]))
        #720x960
        center, area, img = get_object(frame, RED_MIN, RED_MAX)
        print(tello.get_battery())

        # Display the resulting frame
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        cv2.imshow('frame', img)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    # When everything done, release all
    tello.close()
    cv2.destroyAllWindows()
Esempio n. 2
0
local_ip = ['192.168.10.2', '192.168.10.3']
# local_ip = ['192.168.10.10', '192.168.10.19']  # Test ip's for debugging while the drone is charging
local_port = 8889
imperial = False  # MPH to KMH further info in tello.py
i = 0
while True:
    try:
        tello = Tello(local_ip[i], local_port, imperial, wait_time + 1)
    except OSError:
        i = i + 1
        if i == 2:
            break
        else:
            print(local_ip[i], "Is wrong ip")
try:
    Current_battery = tello.get_battery()
except NameError:
    sys.exit("No ip found")
if Current_battery >= Lowest_battery:
    print("Battery is fine")
    tello.takeoff()
    time.sleep(wait_time)  # delay for 1 seconds
    tello.flip('b')
    time.sleep(wait_time)  # delay for 1 seconds
    tello.rotate_cw(180)
    time.sleep(wait_time)
    tello.set_speed(2)
    time.sleep(1)
    tello.move_forward(0.1)
    time.sleep(wait_time)
    print('moved')
class Drone:
    def __init__(self, local_ip, local_port):

        self.drone = Tello(local_ip, local_port)

    def close(self):
        self.drone.close()

    def dame_imagen(self):
        return self.drone.get_image()

    def dame_objeto(self):
        return self.drone.get_object(showImageFiltered=True)

# ------------ EXTRA ------------

    def despegar(self):
        return self.drone.takeoff()

    def aterrizar(self):
        return self.drone.land()

# ------------ CONTROL EN VELOCIDAD ------------

    def to_rc(self, v):
        return math.floor((100 * v) / V_MAX)

    def to_rc_rot(self, w):
        return math.floor((100 * w) / W_MAX)

    # Las 4 funciones: velocidad, avanzar, retroceder y lateral_izquierda
    # son bloqueantes, avanzan hasta una determinada posición y paran
    # y después ejecutan la siguiente instrucción (no hay movimiento contínuo)
    #def velocidad(self, vel):
    #    return self.set_speed(vel)

    #def avanzar(self, vel):
    #    self.drone.forward_speed(vel)

    #def retroceder(self, vel):
    #    self.drone.backward_speed(vel)

    #def lateral_izquierda(self, vel):
    #    self.drone.left_speed(vel)

    # Modo RadioControl, movimiento constante con rangos de velocidades
    # -100 a 100 (simulando un stick analógico). He hecho pruebas y la velocidad
    # máxima de avance (con vx = 100) es de aprox. 1.5 m/s (igual que si pilotas en la app
    # del móvil) aunque en los foros y la  documentación pone que es máximo 1 m/s.
    # La velocidad máxima teórica del Tello es de 10 m/s pero está capado (hay que tocar el
    # firmware).
    # Con el API solo se puede ir en modo lento (velocidad max de 1 m/s), y con la app
    # del movil se puede poner el modo rápido que tiene una velocidad maxima de 3 m/s.
    def _rc(self, vy, vx, vz, rot):

        self.drone.set_velocities(vy, vx, vz, rot)

    def avanzar(self, vx):
        vx = self.to_rc(vx)
        self._rc(0, vx, 0, 0)

    def retroceder(self, vx):
        vx = self.to_rc(vx) * (-1)
        self._rc(0, vx, 0, 0)

    def lateral_izquierda(self, vy):
        vy = self.to_rc(vy)
        self._rc(vy, 0, 0, 0)

    def lateral_derecha(self, vy):
        vy = self.to_rc(vy) * (-1)
        self._rc(vy, 0, 0, 0)

    def subir(self, vz):
        vz = self.to_rc(vz)
        self._rc(0, 0, vz, 0)

    def bajar(self, vz):
        vz = self.to_rc(vz) * (-1)
        self._rc(0, 0, vz, 0)

    def girar_izquierda(self, rot):
        rot = self.to_rc_rot(rot)
        self._rc(0, 0, 0, rot)

    def girar_derecha(self, rot):
        rot = self.to_rc_rot(rot) * (-1)
        self._rc(0, 0, 0, rot)

    def movimiento_libre(self, vx, vy, vz, rot):
        self._rc(self.to_rc(vy), self.to_rc(vx), self.to_rc(vz),
                 self.to_rc_rot(rot))

    def parar(self):
        self.drone.stop()

# ------------ CONTROL EN POSICION ------------

    def girar_derecha_hasta(self, grados):
        return self.drone.rotate_cw(grados)

    #def girar_derecha(self, grados):
    #    return self.rotate_cw(grados)

    def girar_izquierda_hasta(self, grados):
        return self.drone.rotate_ccw(grados)

    #def girar_izquierda(self, grados):
    #    return self.rotate_ccw(grados)

    def retrocecer_hasta(self, distancia):
        return self.drone.move_backward(distancia)

    def bajar_hasta(self, distancia):
        return self.drone.move_down(distancia)

    def avanzar_hasta(self, distancia):
        return self.drone.move_forward(distancia)

    def izquierda_hasta(self, distancia):
        return self.drone.move_left(distancia)

    def derecha_hasta(self, distancia):
        return self.drone.move_right(distancia)

    def subir_hasta(self, distancia):
        return self.drone.move_up(distancia)

# ------ METODOS INFORMATIVOS ------

    def altura_actual(self):
        return self.drone.get_height()

    def bateria_restante(self):
        return self.drone.get_battery()

    def tiempo_de_vuelo(self):
        return self.drone.get_flight_time()

    def velocidad_actual(self):
        return self.drone.get_speed()
Esempio n. 4
0
        elif key == keyboard.Key.down:
            vx = 0
        elif key == keyboard.Key.right:
            vy = 0
        elif key == keyboard.Key.left:
            vy = 0

        elif key == keyboard.Key.esc:
            tello.land()
            tello.close()
            return False

    tello.set_velocities(vy, vx, vz, rot)


print(tello.get_battery())
tello.takeoff()
#time.sleep(6)

# Collect events until released
listener = keyboard.Listener(on_press=on_press, on_release=on_release)
listener.daemon = True
listener.start()

while (True):
    # Capture frame-by-frame
    #ret, frame = cap.read()
    frame = tello.get_image()

    # Our operations on the frame come here
    gray = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
Esempio n. 5
0
class Follower:
    def __init__(self):
        pygame.init()
        pygame.display.set_caption("Tello video stream")
        self.screen = pygame.display.set_mode([960, 720])

        # Drone velocities between -100~100
        self.for_back_velocity = 0
        self.left_right_velocity = 0
        self.up_down_velocity = 0
        self.yaw_velocity = 0
        self.speed = 10

        self.tello = Tello()
        self.send_rc_control = False
        pygame.time.set_timer(pygame.USEREVENT + 1, 1000 // FPS)

        self.personTracker = PersonTracker()

        self.Px, self.Ix, self.Dx = 0.10, 0, -0  #D gain should be negative.
        self.Py, self.Iy, self.Dy = 0.1, 0, -0
        self.Pz, self.Iz, self.Dz = 0.25, 0, -0.001

        self.prev_err_x, self.prev_err_y, self.prev_err_z = None, None, None
        self.accum_err_x, self.accum_err_y, self.accum_err_z = 0, 0, 0
        self.found_person = False
        self.manual = True

        self.iter = 0

    def run(self):
        self.tello.connect()
        self.tello.set_speed(self.speed)

        # In case streaming is on. This happens when we quit this program without the escape key.
        self.tello.streamoff()
        self.tello.streamon()

        frame_read = self.tello.get_frame_read()

        should_stop = False
        imprinted = False
        emergency_counter = 0
        while not should_stop:
            for event in pygame.event.get():
                if event.type == pygame.USEREVENT + 1:
                    self.update()
                elif event.type == pygame.QUIT:
                    should_stop = True
                elif event.type == pygame.KEYDOWN:
                    if event.key == pygame.K_ESCAPE:
                        should_stop = True
                    else:
                        self.keydown(event.key)
                elif event.type == pygame.KEYUP:
                    self.keyup(event.key)
            if frame_read.stopped:
                break

            self.screen.fill([0, 0, 0])

            frame = frame_read.frame
            if self.iter > 240:
                humanBox, imprinted = self.personTracker.findMyHooman(frame)
                if humanBox is None and self.send_rc_control and not self.manual:
                    emergency_counter += 1
                    if emergency_counter >= 120:  #missed human for 120 frames; 1 second
                        print("ENGAGING EMERGENCY HOVER.")
                        cv2.putText(frame, "EMERGENCY HOVER", (700, 130),
                                    cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0),
                                    2)

                        self.emergencyHover()
                elif humanBox is not None:
                    if self.found_person == False:
                        self.found_person = True
                    emergency_counter = 0

                #PID LOOP:
                desired_pos = (frame.shape[1] // 2, frame.shape[0] // 2
                               )  #format x,y

                if humanBox is not None:
                    xmin = int(humanBox[1] * frame.shape[1])
                    ymin = int(humanBox[0] * frame.shape[0])
                    xmax = int(humanBox[3] * frame.shape[1])
                    ymax = int(humanBox[2] * frame.shape[0])
                    centerHumanPosition = (np.mean(
                        (xmax, xmin)), np.mean((ymax, ymin)))  #format x,y
                    #draw bounding box

                    cv2.rectangle(frame, (xmin, ymin), (xmax, ymax),
                                  (255, 0, 0), 2)  #blue
                    #draw target coord

                    cv2.circle(frame, (int(
                        centerHumanPosition[0]), int(centerHumanPosition[1])),
                               10, (255, 0, 0), 1)  #blue
                    # print("z width: {}".format(np.abs(xmax-xmin)))
                    #draw desired coord
                    cv2.circle(frame, desired_pos, 10, (0, 0, 255), 1)  #red

                    if self.send_rc_control and not self.manual:
                        self.update_control(centerHumanPosition, desired_pos,
                                            xmax, xmin)

            text = "Battery: {}%".format(self.tello.get_battery())
            cv2.putText(frame, text, (5, 720 - 5), cv2.FONT_HERSHEY_SIMPLEX, 1,
                        (0, 0, 255), 2)

            heightText = "Height:{}".format(self.tello.get_height())

            cv2.putText(frame, heightText, (720 - 5, 40),
                        cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

            manualText = "Manual: {}".format(self.manual)
            if self.manual:
                cv2.putText(frame, manualText, (720 - 5, 70),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
            else:
                cv2.putText(frame, manualText, (720 - 5, 70),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

            imprintedTxt = "Imprinted: {}".format(imprinted)
            if imprinted:
                cv2.putText(frame, imprintedTxt, (720 - 5, 100),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
            else:
                cv2.putText(frame, imprintedTxt, (720 - 5, 100),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame = np.rot90(frame)
            frame = np.flipud(frame)

            frame = pygame.surfarray.make_surface(frame)
            self.screen.blit(frame, (0, 0))
            pygame.display.update()

            if self.iter <= 240:
                self.iter += 1
            time.sleep(1 / FPS)

        # Call it always before finishing. To deallocate resources.
        self.tello.end()

    def keydown(self, key):
        """ Update velocities based on key pressed
        Arguments:
            key: pygame key
        """
        if key == pygame.K_UP:  # set forward velocity
            self.for_back_velocity = S
        elif key == pygame.K_DOWN:  # set backward velocity
            self.for_back_velocity = -S
        elif key == pygame.K_LEFT:  # set left velocity
            self.left_right_velocity = -S
        elif key == pygame.K_RIGHT:  # set right velocity
            self.left_right_velocity = S
        elif key == pygame.K_w:  # set up velocity
            self.up_down_velocity = S
        elif key == pygame.K_s:  # set down velocity
            self.up_down_velocity = -S
        elif key == pygame.K_a:  # set yaw counter clockwise velocity
            self.yaw_velocity = -S
        elif key == pygame.K_d:  # set yaw clockwise velocity
            self.yaw_velocity = S
        elif key == pygame.K_m:  # set yaw clockwise velocity
            self.manual = not self.manual
            self.yaw_velocity = 0
            self.up_down_velocity = 0
            self.left_right_velocity = 0
            print("MANUAL MODE IS NOW: {}".format(self.manual))

    def keyup(self, key):
        """ Update velocities based on key released
        Arguments:
            key: pygame key
        """
        if key == pygame.K_UP or key == pygame.K_DOWN:  # set zero forward/backward velocity
            self.for_back_velocity = 0
        elif key == pygame.K_LEFT or key == pygame.K_RIGHT:  # set zero left/right velocity
            self.left_right_velocity = 0
        elif key == pygame.K_w or key == pygame.K_s:  # set zero up/down velocity
            self.up_down_velocity = 0
        elif key == pygame.K_a or key == pygame.K_d:  # set zero yaw velocity
            self.yaw_velocity = 0
        elif key == pygame.K_t:  # takeoff
            self.tello.takeoff()
            self.send_rc_control = True

        elif key == pygame.K_l:  # land
            not self.tello.land()
            self.iter = 0
            self.send_rc_control = False

    def update(self):
        """ Update routine. Send velocities to Tello."""
        if self.send_rc_control:
            self.tello.send_rc_control(self.left_right_velocity,
                                       self.for_back_velocity,
                                       self.up_down_velocity,
                                       self.yaw_velocity)

    def update_control(self, curr_lateral_pos, desired_later_pos, xmax, xmin):
        #Three error directions. Two lateral, one forward/backward. How to calc forward/back error?
        err_x = curr_lateral_pos[0] - desired_later_pos[
            0]  #if positive, we're to the left of where we want to be, so want positive control. (CHECK THIS)
        err_y = desired_later_pos[1] - curr_lateral_pos[
            1]  #if positive, we're below where we want to be. (CHECK THIS)

        #hardcode desired box width. Must test!!
        desired_width = 350
        curr_width = np.abs(xmax -
                            xmin)  #check. is this actually the width dim?

        err_z = desired_width - curr_width  #if negative, too close; want backwards--> positive gain
        # print("Err z: {}".format(err_z))

        if self.prev_err_x == None:
            derivative_x_input = 0
            derivative_y_input = 0
            derivative_z_input = 0
        else:
            derivative_x_input = (err_x - self.prev_err_x) / (1 / FPS)
            derivative_y_input = (err_y - self.prev_err_y) / (1 / FPS)
            derivative_z_input = (err_z - self.prev_err_z) / (1 / FPS)

            #clip derivative errors to avoid noise
            derivative_x_input = np.clip(derivative_x_input, -11000, 11000)
            derivative_y_input = np.clip(derivative_y_input, -11000, 11000)
            derivative_z_input = np.clip(derivative_z_input, -11000, 11000)

        self.accum_err_x += err_x
        self.accum_err_y += err_y
        self.accum_err_z += err_z

        self.prev_err_x = err_x
        self.prev_err_y = err_y
        self.prev_err_z = err_z

        # print("derr_z: {}".format(derivative_z_input))

        # self.left_right_velocity = self.Px*err_x+self.Dx*derivative_x_input+self.Ix*self.accum_err_x
        self.yaw_velocity = self.Px * err_x + self.Dx * derivative_x_input + self.Ix * self.accum_err_x
        self.up_down_velocity = self.Py * err_y + self.Dy * derivative_y_input + self.Iy * self.accum_err_y
        self.for_back_velocity = self.Pz * err_z + self.Dy * derivative_z_input + self.Iz * self.accum_err_z

        #limit velocity to 2*S.
        # self.left_right_velocity = np.clip(self.left_right_velocity, -S*2, S*2)
        self.yaw_velocity = int(np.clip(self.yaw_velocity, -S, S))
        self.up_down_velocity = int(np.clip(self.up_down_velocity, -S, S))
        self.for_back_velocity = int(np.clip(self.for_back_velocity, -S, S))

        #Send new velocities to robot.
        self.update()

    def emergencyHover(self):
        print("Cannot find hooman. I am lonely doggo. Hovering and rotating.")

        self.found_person = False

        self.for_back_velocity = 0
        self.left_right_velocity = 0
        self.up_down_velocity = 0
        self.yaw_velocity = int(S // 2)
        self.update()