Esempio n. 1
0
def img_to_array(img, data_format=None):
  """Converts a PIL Image instance to a Numpy array.

  Arguments:
      img: PIL Image instance.
      data_format: Image data format.

  Returns:
      A 3D Numpy array.

  Raises:
      ValueError: if invalid `img` or `data_format` is passed.
  """
  if data_format is None:
    data_format = K.image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Unknown data_format: ', data_format)
  # Numpy array x has format (height, width, channel)
  # or (channel, height, width)
  # but original PIL image has format (width, height, channel)
  x = np.asarray(img, dtype=K.floatx())
  if len(x.shape) == 3:
    if data_format == 'channels_first':
      x = x.transpose(2, 0, 1)
  elif len(x.shape) == 2:
    if data_format == 'channels_first':
      x = x.reshape((1, x.shape[0], x.shape[1]))
    else:
      x = x.reshape((x.shape[0], x.shape[1], 1))
  else:
    raise ValueError('Unsupported image shape: ', x.shape)
  return x
Esempio n. 2
0
def preprocess_input(x, data_format=None):
  """Preprocesses a tensor encoding a batch of images.

  Arguments:
      x: input Numpy tensor, 4D.
      data_format: data format of the image tensor.

  Returns:
      Preprocessed tensor.
  """
  if data_format is None:
    data_format = K.image_data_format()
  assert data_format in {'channels_last', 'channels_first'}

  if data_format == 'channels_first':
    # 'RGB'->'BGR'
    x = x[:, ::-1, :, :]
    # Zero-center by mean pixel
    x[:, 0, :, :] -= 103.939
    x[:, 1, :, :] -= 116.779
    x[:, 2, :, :] -= 123.68
  else:
    # 'RGB'->'BGR'
    x = x[:, :, :, ::-1]
    # Zero-center by mean pixel
    x[:, :, :, 0] -= 103.939
    x[:, :, :, 1] -= 116.779
    x[:, :, :, 2] -= 123.68
  return x
Esempio n. 3
0
def load_data(label_mode='fine'):
  """Loads CIFAR100 dataset.

  Arguments:
      label_mode: one of "fine", "coarse".

  Returns:
      Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.

  Raises:
      ValueError: in case of invalid `label_mode`.
  """
  if label_mode not in ['fine', 'coarse']:
    raise ValueError('label_mode must be one of "fine" "coarse".')

  dirname = 'cifar-100-python'
  origin = 'http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
  path = get_file(dirname, origin=origin, untar=True)

  fpath = os.path.join(path, 'train')
  x_train, y_train = load_batch(fpath, label_key=label_mode + '_labels')

  fpath = os.path.join(path, 'test')
  x_test, y_test = load_batch(fpath, label_key=label_mode + '_labels')

  y_train = np.reshape(y_train, (len(y_train), 1))
  y_test = np.reshape(y_test, (len(y_test), 1))

  if K.image_data_format() == 'channels_last':
    x_train = x_train.transpose(0, 2, 3, 1)
    x_test = x_test.transpose(0, 2, 3, 1)

  return (x_train, y_train), (x_test, y_test)
Esempio n. 4
0
def load_data():
  """Loads CIFAR10 dataset.

  Returns:
      Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
  """
  dirname = 'cifar-10-batches-py'
  origin = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
  path = get_file(dirname, origin=origin, untar=True)

  num_train_samples = 50000

  x_train = np.zeros((num_train_samples, 3, 32, 32), dtype='uint8')
  y_train = np.zeros((num_train_samples,), dtype='uint8')

  for i in range(1, 6):
    fpath = os.path.join(path, 'data_batch_' + str(i))
    data, labels = load_batch(fpath)
    x_train[(i - 1) * 10000:i * 10000, :, :, :] = data
    y_train[(i - 1) * 10000:i * 10000] = labels

  fpath = os.path.join(path, 'test_batch')
  x_test, y_test = load_batch(fpath)

  y_train = np.reshape(y_train, (len(y_train), 1))
  y_test = np.reshape(y_test, (len(y_test), 1))

  if K.image_data_format() == 'channels_last':
    x_train = x_train.transpose(0, 2, 3, 1)
    x_test = x_test.transpose(0, 2, 3, 1)

  return (x_train, y_train), (x_test, y_test)
Esempio n. 5
0
def normalize_data_format(value):
  if value is None:
    value = K.image_data_format()
  data_format = value.lower()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('The `data_format` argument must be one of '
                     '"channels_first", "channels_last". Received: ' + str(
                         value))
  return data_format
Esempio n. 6
0
def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):
  """Adds an initial convolution layer (with batch normalization and relu6).

  Arguments:
      inputs: Input tensor of shape `(rows, cols, 3)`
          (with `channels_last` data format) or
          (3, rows, cols) (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 32.
          E.g. `(224, 224, 3)` would be one valid value.
      filters: Integer, the dimensionality of the output space
          (i.e. the number output of filters in the convolution).
      alpha: controls the width of the network.
          - If `alpha` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `alpha` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `alpha` = 1, default number of filters from the paper
               are used at each layer.
      kernel: An integer or tuple/list of 2 integers, specifying the
          width and height of the 2D convolution window.
          Can be a single integer to specify the same value for
          all spatial dimensions.
      strides: An integer or tuple/list of 2 integers,
          specifying the strides of the convolution along the width and height.
          Can be a single integer to specify the same value for
          all spatial dimensions.
          Specifying any stride value != 1 is incompatible with specifying
          any `dilation_rate` value != 1.

  Input shape:
      4D tensor with shape:
      `(samples, channels, rows, cols)` if data_format='channels_first'
      or 4D tensor with shape:
      `(samples, rows, cols, channels)` if data_format='channels_last'.

  Output shape:
      4D tensor with shape:
      `(samples, filters, new_rows, new_cols)` if data_format='channels_first'
      or 4D tensor with shape:
      `(samples, new_rows, new_cols, filters)` if data_format='channels_last'.
      `rows` and `cols` values might have changed due to stride.

  Returns:
      Output tensor of block.
  """
  channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
  filters = int(filters * alpha)
  x = Conv2D(
      filters,
      kernel,
      padding='same',
      use_bias=False,
      strides=strides,
      name='conv1')(inputs)
  x = BatchNormalization(axis=channel_axis, name='conv1_bn')(x)
  return Activation(relu6, name='conv1_relu')(x)
Esempio n. 7
0
 def __init__(self, rate, data_format=None, **kwargs):
   super(SpatialDropout3D, self).__init__(rate, **kwargs)
   if data_format is None:
     data_format = K.image_data_format()
   if data_format not in {'channels_last', 'channels_first'}:
     raise ValueError('data_format must be in '
                      '{"channels_last", "channels_first"}')
   self.data_format = data_format
   self.input_spec = InputSpec(ndim=5)
Esempio n. 8
0
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2,
                                                                          2)):
  """conv_block is the block that has a conv layer at shortcut.

  Arguments:
      input_tensor: input tensor
      kernel_size: defualt 3, the kernel size of middle conv layer at main path
      filters: list of integers, the filterss of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names
      strides: Tuple of integers.

  Returns:
      Output tensor for the block.

  Note that from stage 3, the first conv layer at main path is with
  strides=(2,2)
  And the shortcut should have strides=(2,2) as well
  """
  filters1, filters2, filters3 = filters
  if K.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = Conv2D(
      filters1, (1, 1), strides=strides,
      name=conv_name_base + '2a')(input_tensor)
  x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
  x = Activation('relu')(x)

  x = Conv2D(
      filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
  x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
  x = Activation('relu')(x)

  x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
  x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)

  shortcut = Conv2D(
      filters3, (1, 1), strides=strides,
      name=conv_name_base + '1')(input_tensor)
  shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)

  x = layers.add([x, shortcut])
  x = Activation('relu')(x)
  return x
Esempio n. 9
0
def array_to_img(x, data_format=None, scale=True):
  """Converts a 3D Numpy array to a PIL Image instance.

  Arguments:
      x: Input Numpy array.
      data_format: Image data format.
      scale: Whether to rescale image values
          to be within [0, 255].

  Returns:
      A PIL Image instance.

  Raises:
      ImportError: if PIL is not available.
      ValueError: if invalid `x` or `data_format` is passed.
  """
  if pil_image is None:
    raise ImportError('Could not import PIL.Image. '
                      'The use of `array_to_img` requires PIL.')
  x = np.asarray(x, dtype=K.floatx())
  if x.ndim != 3:
    raise ValueError('Expected image array to have rank 3 (single image). '
                     'Got array with shape:', x.shape)

  if data_format is None:
    data_format = K.image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Invalid data_format:', data_format)

  # Original Numpy array x has format (height, width, channel)
  # or (channel, height, width)
  # but target PIL image has format (width, height, channel)
  if data_format == 'channels_first':
    x = x.transpose(1, 2, 0)
  if scale:
    x = x + max(-np.min(x), 0)  # pylint: disable=g-no-augmented-assignment
    x_max = np.max(x)
    if x_max != 0:
      x /= x_max
    x *= 255
  if x.shape[2] == 3:
    # RGB
    return pil_image.fromarray(x.astype('uint8'), 'RGB')
  elif x.shape[2] == 1:
    # grayscale
    return pil_image.fromarray(x[:, :, 0].astype('uint8'), 'L')
  else:
    raise ValueError('Unsupported channel number: ', x.shape[2])
Esempio n. 10
0
  def __init__(self,
               x,
               y,
               image_data_generator,
               batch_size=32,
               shuffle=False,
               seed=None,
               data_format=None,
               save_to_dir=None,
               save_prefix='',
               save_format='jpeg'):
    if y is not None and len(x) != len(y):
      raise ValueError('X (images tensor) and y (labels) '
                       'should have the same length. '
                       'Found: X.shape = %s, y.shape = %s' %
                       (np.asarray(x).shape, np.asarray(y).shape))

    if data_format is None:
      data_format = K.image_data_format()
    self.x = np.asarray(x, dtype=K.floatx())

    if self.x.ndim != 4:
      raise ValueError('Input data in `NumpyArrayIterator` '
                       'should have rank 4. You passed an array '
                       'with shape', self.x.shape)
    channels_axis = 3 if data_format == 'channels_last' else 1
    if self.x.shape[channels_axis] not in {1, 3, 4}:
      raise ValueError(
          'NumpyArrayIterator is set to use the '
          'data format convention "' + data_format + '" '
          '(channels on axis ' + str(channels_axis) + '), i.e. expected '
          'either 1, 3 or 4 channels on axis ' + str(channels_axis) + '. '
          'However, it was passed an array with shape ' + str(self.x.shape) +
          ' (' + str(self.x.shape[channels_axis]) + ' channels).')
    if y is not None:
      self.y = np.asarray(y)
    else:
      self.y = None
    self.image_data_generator = image_data_generator
    self.data_format = data_format
    self.save_to_dir = save_to_dir
    self.save_prefix = save_prefix
    self.save_format = save_format
    super(NumpyArrayIterator, self).__init__(x.shape[0], batch_size, shuffle,
                                             seed)
Esempio n. 11
0
def conv2d_bn(x,
              filters,
              num_row,
              num_col,
              padding='same',
              strides=(1, 1),
              name=None):
  """Utility function to apply conv + BN.

  Arguments:
      x: input tensor.
      filters: filters in `Conv2D`.
      num_row: height of the convolution kernel.
      num_col: width of the convolution kernel.
      padding: padding mode in `Conv2D`.
      strides: strides in `Conv2D`.
      name: name of the ops; will become `name + '_conv'`
          for the convolution and `name + '_bn'` for the
          batch norm layer.

  Returns:
      Output tensor after applying `Conv2D` and `BatchNormalization`.
  """
  if name is not None:
    bn_name = name + '_bn'
    conv_name = name + '_conv'
  else:
    bn_name = None
    conv_name = None
  if K.image_data_format() == 'channels_first':
    bn_axis = 1
  else:
    bn_axis = 3
  x = Conv2D(
      filters, (num_row, num_col),
      strides=strides,
      padding=padding,
      use_bias=False,
      name=conv_name)(x)
  x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
  x = Activation('relu', name=name)(x)
  return x
Esempio n. 12
0
def conv2d_bn(x,
              filters,
              kernel_size,
              strides=1,
              padding='same',
              activation='relu',
              use_bias=False,
              name=None):
    """Utility function to apply conv + BN.
    # Arguments
        x: input tensor.
        filters: filters in `Conv2D`.
        kernel_size: kernel size as in `Conv2D`.
        strides: strides in `Conv2D`.
        padding: padding mode in `Conv2D`.
        activation: activation in `Conv2D`.
        use_bias: whether to use a bias in `Conv2D`.
        name: name of the ops; will become `name + '_ac'` for the activation
            and `name + '_bn'` for the batch norm layer.
    # Returns
        Output tensor after applying `Conv2D` and `BatchNormalization`.
    """
    x = Conv2D(filters,
               kernel_size,
               strides=strides,
               padding=padding,
               use_bias=use_bias,
               name=name)(x)
    if not use_bias:
        bn_axis = 1 if K.image_data_format() == 'channels_first' else 3
        bn_name = None if name is None else name + '_bn'
        x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
    if activation is not None:
        ac_name = None if name is None else name + '_ac'
        x = Activation(activation, name=ac_name)(x)
    return x
Esempio n. 13
0
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  Arguments:
      input_tensor: input tensor
      kernel_size: defualt 3, the kernel size of middle conv layer at main path
      filters: list of integers, the filterss of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  Returns:
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if K.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
  x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
  x = Activation('relu')(x)

  x = Conv2D(
      filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
  x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
  x = Activation('relu')(x)

  x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
  x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = Activation('relu')(x)
  return x
Esempio n. 14
0
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  Arguments:
      input_tensor: input tensor
      kernel_size: defualt 3, the kernel size of middle conv layer at main path
      filters: list of integers, the filterss of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  Returns:
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if K.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
  x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
  x = Activation('relu')(x)

  x = Conv2D(
      filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
  x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
  x = Activation('relu')(x)

  x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
  x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = Activation('relu')(x)
  return x
Esempio n. 15
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_data_format="channels_last"` in your Keras config
    at ~/.keras/keras.json.

    The model and the weights are compatible with both
    TensorFlow and Theano. The data format
    convention used by the model is the one
    specified in your Keras config file.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or "imagenet" (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 244)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 197.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional layer.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=197,
                                      data_format=K.image_data_format(),
                                      include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x = AveragePooling2D((7, 7), name='avg_pool')(x)

    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='resnet50')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = WEIGHTS_PATH
        else:
            weights_path = WEIGHTS_PATH_NO_TOP
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='avg_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1000')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')

            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
    return model
Esempio n. 16
0
def Xception(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
  """Instantiates the Xception architecture.

  Optionally loads weights pre-trained
  on ImageNet. This model is available for TensorFlow only,
  and can only be used with inputs following the TensorFlow
  data format `(width, height, channels)`.
  You should set `image_data_format="channels_last"` in your Keras config
  located at ~/.keras/keras.json.

  Note that the default input image size for this model is 299x299.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(299, 299, 3)`.
          It should have exactly 3 input channels,
          and width and height should be no smaller than 71.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """
  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  if K.backend() != 'tensorflow':
    raise RuntimeError('The Xception model is only available with '
                       'the TensorFlow backend.')
  if K.image_data_format() != 'channels_last':
    logging.warning(
        'The Xception model is only available for the '
        'input data format "channels_last" '
        '(width, height, channels). '
        'However your settings specify the default '
        'data format "channels_first" (channels, width, height). '
        'You should set `image_data_format="channels_last"` in your Keras '
        'config located at ~/.keras/keras.json. '
        'The model being returned right now will expect inputs '
        'to follow the "channels_last" data format.')
    K.set_image_data_format('channels_last')
    old_data_format = 'channels_first'
  else:
    old_data_format = None

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=71,
      data_format=K.image_data_format(),
      require_flatten=False,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    img_input = Input(tensor=input_tensor, shape=input_shape)

  x = Conv2D(
      32, (3, 3), strides=(2, 2), use_bias=False,
      name='block1_conv1')(img_input)
  x = BatchNormalization(name='block1_conv1_bn')(x)
  x = Activation('relu', name='block1_conv1_act')(x)
  x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
  x = BatchNormalization(name='block1_conv2_bn')(x)
  x = Activation('relu', name='block1_conv2_act')(x)

  residual = Conv2D(
      128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
  residual = BatchNormalization()(residual)

  x = SeparableConv2D(
      128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x)
  x = BatchNormalization(name='block2_sepconv1_bn')(x)
  x = Activation('relu', name='block2_sepconv2_act')(x)
  x = SeparableConv2D(
      128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x)
  x = BatchNormalization(name='block2_sepconv2_bn')(x)

  x = MaxPooling2D(
      (3, 3), strides=(2, 2), padding='same', name='block2_pool')(x)
  x = layers.add([x, residual])

  residual = Conv2D(
      256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
  residual = BatchNormalization()(residual)

  x = Activation('relu', name='block3_sepconv1_act')(x)
  x = SeparableConv2D(
      256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x)
  x = BatchNormalization(name='block3_sepconv1_bn')(x)
  x = Activation('relu', name='block3_sepconv2_act')(x)
  x = SeparableConv2D(
      256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x)
  x = BatchNormalization(name='block3_sepconv2_bn')(x)

  x = MaxPooling2D(
      (3, 3), strides=(2, 2), padding='same', name='block3_pool')(x)
  x = layers.add([x, residual])

  residual = Conv2D(
      728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
  residual = BatchNormalization()(residual)

  x = Activation('relu', name='block4_sepconv1_act')(x)
  x = SeparableConv2D(
      728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x)
  x = BatchNormalization(name='block4_sepconv1_bn')(x)
  x = Activation('relu', name='block4_sepconv2_act')(x)
  x = SeparableConv2D(
      728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x)
  x = BatchNormalization(name='block4_sepconv2_bn')(x)

  x = MaxPooling2D(
      (3, 3), strides=(2, 2), padding='same', name='block4_pool')(x)
  x = layers.add([x, residual])

  for i in range(8):
    residual = x
    prefix = 'block' + str(i + 5)

    x = Activation('relu', name=prefix + '_sepconv1_act')(x)
    x = SeparableConv2D(
        728, (3, 3), padding='same', use_bias=False,
        name=prefix + '_sepconv1')(x)
    x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
    x = Activation('relu', name=prefix + '_sepconv2_act')(x)
    x = SeparableConv2D(
        728, (3, 3), padding='same', use_bias=False,
        name=prefix + '_sepconv2')(x)
    x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
    x = Activation('relu', name=prefix + '_sepconv3_act')(x)
    x = SeparableConv2D(
        728, (3, 3), padding='same', use_bias=False,
        name=prefix + '_sepconv3')(x)
    x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)

    x = layers.add([x, residual])

  residual = Conv2D(
      1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
  residual = BatchNormalization()(residual)

  x = Activation('relu', name='block13_sepconv1_act')(x)
  x = SeparableConv2D(
      728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x)
  x = BatchNormalization(name='block13_sepconv1_bn')(x)
  x = Activation('relu', name='block13_sepconv2_act')(x)
  x = SeparableConv2D(
      1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x)
  x = BatchNormalization(name='block13_sepconv2_bn')(x)

  x = MaxPooling2D(
      (3, 3), strides=(2, 2), padding='same', name='block13_pool')(x)
  x = layers.add([x, residual])

  x = SeparableConv2D(
      1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x)
  x = BatchNormalization(name='block14_sepconv1_bn')(x)
  x = Activation('relu', name='block14_sepconv1_act')(x)

  x = SeparableConv2D(
      2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x)
  x = BatchNormalization(name='block14_sepconv2_bn')(x)
  x = Activation('relu', name='block14_sepconv2_act')(x)

  if include_top:
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='xception')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'xception_weights_tf_dim_ordering_tf_kernels.h5',
          TF_WEIGHTS_PATH,
          cache_subdir='models')
    else:
      weights_path = get_file(
          'xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
          TF_WEIGHTS_PATH_NO_TOP,
          cache_subdir='models')
    model.load_weights(weights_path)

  if old_data_format:
    K.set_image_data_format(old_data_format)
  return model
Esempio n. 17
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
  """Instantiates the ResNet50 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 244)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 197.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=224,
      min_size=197,
      data_format=K.image_data_format(),
      include_top=include_top)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    img_input = Input(tensor=input_tensor, shape=input_shape)

  if K.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1

  x = ZeroPadding2D((3, 3))(img_input)
  x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
  x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
  x = Activation('relu')(x)
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

  x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

  x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

  x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

  x = AveragePooling2D((7, 7), name='avg_pool')(x)

  if include_top:
    x = Flatten()(x)
    x = Dense(classes, activation='softmax', name='fc1000')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='resnet50')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
    else:
      weights_path = get_file(
          'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          md5_hash='a268eb855778b3df3c7506639542a6af')
    model.load_weights(weights_path)
    if K.backend() == 'theano':
      layer_utils.convert_all_kernels_in_model(model)

    if K.image_data_format() == 'channels_first':
      if include_top:
        maxpool = model.get_layer(name='avg_pool')
        shape = maxpool.output_shape[1:]
        dense = model.get_layer(name='fc1000')
        layer_utils.convert_dense_weights_data_format(dense, shape,
                                                      'channels_first')

      if K.backend() == 'tensorflow':
        warnings.warn('You are using the TensorFlow backend, yet you '
                      'are using the Theano '
                      'image data format convention '
                      '(`image_data_format="channels_first"`). '
                      'For best performance, set '
                      '`image_data_format="channels_last"` in '
                      'your Keras config '
                      'at ~/.keras/keras.json.')
  return model
Esempio n. 18
0
def inception_resnet_block(x, scale, block_type, block_idx, activation='relu'):
    """Adds a Inception-ResNet block.
    This function builds 3 types of Inception-ResNet blocks mentioned
    in the paper, controlled by the `block_type` argument (which is the
    block name used in the official TF-slim implementation):
        - Inception-ResNet-A: `block_type='block35'`
        - Inception-ResNet-B: `block_type='block17'`
        - Inception-ResNet-C: `block_type='block8'`
    # Arguments
        x: input tensor.
        scale: scaling factor to scale the residuals (i.e., the output of
            passing `x` through an inception module) before adding them
            to the shortcut branch. Let `r` be the output from the residual branch,
            the output of this block will be `x + scale * r`.
        block_type: `'block35'`, `'block17'` or `'block8'`, determines
            the network structure in the residual branch.
        block_idx: an `int` used for generating layer names. The Inception-ResNet blocks
            are repeated many times in this network. We use `block_idx` to identify
            each of the repetitions. For example, the first Inception-ResNet-A block
            will have `block_type='block35', block_idx=0`, ane the layer names will have
            a common prefix `'block35_0'`.
        activation: activation function to use at the end of the block
            (see [activations](../activations.md)).
            When `activation=None`, no activation is applied
            (i.e., "linear" activation: `a(x) = x`).
    # Returns
        Output tensor for the block.
    # Raises
        ValueError: if `block_type` is not one of `'block35'`,
            `'block17'` or `'block8'`.
    """
    if block_type == 'block35':
        branch_0 = conv2d_bn(x, 32, 1)
        branch_1 = conv2d_bn(x, 32, 1)
        branch_1 = conv2d_bn(branch_1, 32, 3)
        branch_2 = conv2d_bn(x, 32, 1)
        branch_2 = conv2d_bn(branch_2, 48, 3)
        branch_2 = conv2d_bn(branch_2, 64, 3)
        branches = [branch_0, branch_1, branch_2]
    elif block_type == 'block17':
        branch_0 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(x, 128, 1)
        branch_1 = conv2d_bn(branch_1, 160, [1, 7])
        branch_1 = conv2d_bn(branch_1, 192, [7, 1])
        branches = [branch_0, branch_1]
    elif block_type == 'block8':
        branch_0 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(branch_1, 224, [1, 3])
        branch_1 = conv2d_bn(branch_1, 256, [3, 1])
        branches = [branch_0, branch_1]
    else:
        raise ValueError('Unknown Inception-ResNet block type. '
                         'Expects "block35", "block17" or "block8", '
                         'but got: ' + str(block_type))

    block_name = block_type + '_' + str(block_idx)
    channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
    mixed = Concatenate(axis=channel_axis,
                        name=block_name + '_mixed')(branches)
    up = conv2d_bn(mixed,
                   K.int_shape(x)[channel_axis],
                   1,
                   activation=None,
                   use_bias=True,
                   name=block_name + '_conv')

    x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,
               output_shape=K.int_shape(x)[1:],
               arguments={'scale': scale},
               name=block_name)([x, up])
    if activation is not None:
        x = Activation(activation, name=block_name + '_ac')(x)
    return x
Esempio n. 19
0
  def __init__(self,
               directory,
               image_data_generator,
               target_size=(256, 256),
               color_mode='rgb',
               classes=None,
               class_mode='categorical',
               batch_size=32,
               shuffle=True,
               seed=None,
               data_format=None,
               save_to_dir=None,
               save_prefix='',
               save_format='jpeg',
               follow_links=False):
    if data_format is None:
      data_format = K.image_data_format()
    self.directory = directory
    self.image_data_generator = image_data_generator
    self.target_size = tuple(target_size)
    if color_mode not in {'rgb', 'grayscale'}:
      raise ValueError('Invalid color mode:', color_mode,
                       '; expected "rgb" or "grayscale".')
    self.color_mode = color_mode
    self.data_format = data_format
    if self.color_mode == 'rgb':
      if self.data_format == 'channels_last':
        self.image_shape = self.target_size + (3,)
      else:
        self.image_shape = (3,) + self.target_size
    else:
      if self.data_format == 'channels_last':
        self.image_shape = self.target_size + (1,)
      else:
        self.image_shape = (1,) + self.target_size
    self.classes = classes
    if class_mode not in {'categorical', 'binary', 'sparse', None}:
      raise ValueError('Invalid class_mode:', class_mode,
                       '; expected one of "categorical", '
                       '"binary", "sparse", or None.')
    self.class_mode = class_mode
    self.save_to_dir = save_to_dir
    self.save_prefix = save_prefix
    self.save_format = save_format

    white_list_formats = {'png', 'jpg', 'jpeg', 'bmp'}

    # first, count the number of samples and classes
    self.samples = 0

    if not classes:
      classes = []
      for subdir in sorted(os.listdir(directory)):
        if os.path.isdir(os.path.join(directory, subdir)):
          classes.append(subdir)
    self.num_class = len(classes)
    self.class_indices = dict(zip(classes, range(len(classes))))

    def _recursive_list(subpath):
      return sorted(
          os.walk(subpath, followlinks=follow_links), key=lambda tpl: tpl[0])

    for subdir in classes:
      subpath = os.path.join(directory, subdir)
      for root, _, files in _recursive_list(subpath):
        for fname in files:
          is_valid = False
          for extension in white_list_formats:
            if fname.lower().endswith('.' + extension):
              is_valid = True
              break
          if is_valid:
            self.samples += 1
    print('Found %d images belonging to %d classes.' % (self.samples,
                                                        self.num_class))

    # second, build an index of the images in the different class subfolders
    self.filenames = []
    self.classes = np.zeros((self.samples,), dtype='int32')
    i = 0
    for subdir in classes:
      subpath = os.path.join(directory, subdir)
      for root, _, files in _recursive_list(subpath):
        for fname in files:
          is_valid = False
          for extension in white_list_formats:
            if fname.lower().endswith('.' + extension):
              is_valid = True
              break
          if is_valid:
            self.classes[i] = self.class_indices[subdir]
            i += 1
            # add filename relative to directory
            absolute_path = os.path.join(root, fname)
            self.filenames.append(os.path.relpath(absolute_path, directory))
    super(DirectoryIterator, self).__init__(self.samples, batch_size, shuffle,
                                            seed)
Esempio n. 20
0
def VGG16(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000):
    """Instantiates the VGG16 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the 3 fully-connected
          layers at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 48.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
    ### how many weights option can we be allowed
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    ### if use imagenet weights and add last 3 dense layers, then class should be 1000
    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    ### set input shape : (224, 224, 3)
    # default input shape for VGG16 model, designed for imagenet dataset
    input_shape = _obtain_input_shape(
        input_shape,  # if set must be a tuple of 3 integers (50, 50, 3)
        default_size=224,  # if input_shape set, here must be None
        min_size=48,  # 48, but freely change it to your need
        data_format=K.image_data_format(
        ),  # 'channels_first' or 'channels_last'
        include_top=include_top
    )  # True, then must use 224 or False to be other number

    ### Create input tensor: real tensor or container?
    if input_tensor is None:
        # create input tensor placeholder
        img_input = Input(shape=input_shape)
    else:
        img_input = Input(tensor=input_tensor, shape=input_shape)

    # Block 1
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv1')(img_input)

    ## how to access weights of each layer
    block1_conv1 = x
    block1_conv1_bias = block1_conv1.graph._collections['trainable_variables'][
        -1]  # bias
    block1_conv1_kernel = block1_conv1.graph._collections[
        'trainable_variables'][-2]  # kernel

    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv2')(x)
    block1_conv2 = x
    block1_conv2_bias = block1_conv2.graph._collections['trainable_variables'][
        -1]  # bias
    block1_conv2_kernel = block1_conv2.graph._collections[
        'trainable_variables'][-2]  # kernel

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
    block1_pool = x
    # access trainable_variables or weights with biases
    block1_pool.graph._collections['variables'][-1]  # bias
    block1_pool.graph._collections['variables'][-2]  # kernel

    # Block 2
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv1')(x)
    block2_conv1 = x

    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv2')(x)
    block2_conv2 = x

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
    block2_pool = x

    # Block 3
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv1')(x)
    block3_conv1 = x

    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv2')(x)
    block3_conv2 = x

    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv3')(x)
    block3_conv3 = x

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
    block3_pool = x

    # Block 4
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv1')(x)
    block4_conv1 = x

    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv2')(x)
    block4_conv2 = x

    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv3')(x)
    block4_conv3 = x

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
    block4_pool = x

    # Block 5
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv1')(x)
    block5_conv1 = x

    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv2')(x)
    block5_conv2 = x

    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv3')(x)
    block5_conv3 = x

    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
    block5_pool = x

    if include_top:
        # Classification block
        x = Flatten(name='flatten')(x)
        flatten = x
        x = Dense(4096, activation='relu', name='fc1')(x)
        fc1 = x
        x = Dense(4096, activation='relu', name='fc2')(x)
        fc2 = x
        x = Dense(classes, activation='softmax', name='predictions')(x)
        predictions = x

    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='vgg16')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models')
        else:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='block5_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')
    return model
Esempio n. 21
0
def InceptionResNetV2(include_top=True,
                      weights='imagenet',
                      input_tensor=None,
                      input_shape=None,
                      pooling=None,
                      classes=1000):
    """Instantiates the Inception-ResNet v2 architecture.
    Optionally loads weights pre-trained on ImageNet.
    Note that when using TensorFlow, for best performance you should
    set `"image_data_format": "channels_last"` in your Keras config
    at `~/.keras/keras.json`.
    The model and the weights are compatible with TensorFlow, Theano and
    CNTK backends. The data format convention used by the model is
    the one specified in your Keras config file.
    Note that the default input image size for this model is 299x299, instead
    of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
    function is different (i.e., do not use `imagenet_utils.preprocess_input()`
    with this model. Use `preprocess_input()` defined in this module instead).
    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization)
            or `'imagenet'` (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is `False` (otherwise the input shape
            has to be `(299, 299, 3)` (with `'channels_last'` data format)
            or `(3, 299, 299)` (with `'channels_first'` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 139.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the last convolutional layer.
            - `'avg'` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `'max'` means that global max pooling will be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is `True`, and
            if no `weights` argument is specified.
    # Returns
        A Keras `Model` instance.
    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=299,
                                      min_size=139,
                                      data_format=K.image_data_format(),
                                      require_flatten=False,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Stem block: 35 x 35 x 192
    x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
    x = conv2d_bn(x, 32, 3, padding='valid')
    x = conv2d_bn(x, 64, 3)
    x = MaxPooling2D(3, strides=2)(x)
    x = conv2d_bn(x, 80, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, padding='valid')
    x = MaxPooling2D(3, strides=2)(x)

    # Mixed 5b (Inception-A block): 35 x 35 x 320
    branch_0 = conv2d_bn(x, 96, 1)
    branch_1 = conv2d_bn(x, 48, 1)
    branch_1 = conv2d_bn(branch_1, 64, 5)
    branch_2 = conv2d_bn(x, 64, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
    x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)

    # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
    for block_idx in range(1, 11):
        x = inception_resnet_block(x,
                                   scale=0.17,
                                   block_type='block35',
                                   block_idx=block_idx)

    # Mixed 6a (Reduction-A block): 17 x 17 x 1088
    branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 256, 3)
    branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)

    # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
    for block_idx in range(1, 21):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type='block17',
                                   block_idx=block_idx)

    # Mixed 7a (Reduction-B block): 8 x 8 x 2080
    branch_0 = conv2d_bn(x, 256, 1)
    branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
    branch_2 = conv2d_bn(x, 256, 1)
    branch_2 = conv2d_bn(branch_2, 288, 3)
    branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)

    # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
    for block_idx in range(1, 10):
        x = inception_resnet_block(x,
                                   scale=0.2,
                                   block_type='block8',
                                   block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.,
                               activation=None,
                               block_type='block8',
                               block_idx=10)

    # Final convolution block: 8 x 8 x 1536
    x = conv2d_bn(x, 1536, 1, name='conv_7b')

    if include_top:
        # Classification block
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model
    model = Model(inputs, x, name='inception_resnet_v2')

    # Load weights
    if weights == 'imagenet':
        if K.image_data_format() == 'channels_first':
            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
        if include_top:
            weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
            weights_path = get_file(
                weights_filename,
                BASE_WEIGHT_URL + weights_filename,
                cache_subdir='models',
                file_hash='e693bd0210a403b3192acc6073ad2e96')
        else:
            weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'
            weights_path = get_file(
                weights_filename,
                BASE_WEIGHT_URL + weights_filename,
                cache_subdir='models',
                file_hash='d19885ff4a710c122648d3b5c3b684e4')
        model.load_weights(weights_path)

    return model
Esempio n. 22
0
def InceptionV3(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
  """Instantiates the Inception v3 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.
  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.
  Note that the default input image size for this model is 299x299.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(299, 299, 3)` (with `channels_last` data format)
          or `(3, 299, 299)` (with `channels_first` data format).
          It should have exactly 3 input channels,
          and width and height should be no smaller than 139.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=139,
      data_format=K.image_data_format(),
      require_flatten=False,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    img_input = Input(tensor=input_tensor, shape=input_shape)

  if K.image_data_format() == 'channels_first':
    channel_axis = 1
  else:
    channel_axis = 3

  x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
  x = conv2d_bn(x, 32, 3, 3, padding='valid')
  x = conv2d_bn(x, 64, 3, 3)
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv2d_bn(x, 80, 1, 1, padding='valid')
  x = conv2d_bn(x, 192, 3, 3, padding='valid')
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  # mixed 0, 1, 2: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed0')

  # mixed 1: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed1')

  # mixed 2: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed2')

  # mixed 3: 17 x 17 x 768
  branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(
      branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate(
      [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3')

  # mixed 4: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 128, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 128, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch7x7, branch7x7dbl, branch_pool],
      axis=channel_axis,
      name='mixed4')

  # mixed 5, 6: 17 x 17 x 768
  for i in range(2):
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 160, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 160, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed' + str(5 + i))

  # mixed 7: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 192, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 192, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch7x7, branch7x7dbl, branch_pool],
      axis=channel_axis,
      name='mixed7')

  # mixed 8: 8 x 8 x 1280
  branch3x3 = conv2d_bn(x, 192, 1, 1)
  branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding='valid')

  branch7x7x3 = conv2d_bn(x, 192, 1, 1)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
  branch7x7x3 = conv2d_bn(
      branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate(
      [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8')

  # mixed 9: 8 x 8 x 2048
  for i in range(2):
    branch1x1 = conv2d_bn(x, 320, 1, 1)

    branch3x3 = conv2d_bn(x, 384, 1, 1)
    branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
    branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
    branch3x3 = layers.concatenate(
        [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i))

    branch3x3dbl = conv2d_bn(x, 448, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
    branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
    branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
    branch3x3dbl = layers.concatenate(
        [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch3x3, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed' + str(9 + i))
  if include_top:
    # Classification block
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='inception_v3')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          md5_hash='9a0d58056eeedaa3f26cb7ebd46da564')
    else:
      weights_path = get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          md5_hash='bcbd6486424b2319ff4ef7d526e38f63')
    model.load_weights(weights_path)
  return model
Esempio n. 23
0
def VGG16(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000):
  """Instantiates the VGG16 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the 3 fully-connected
          layers at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 input channels,
          and width and height should be no smaller than 48.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')
  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=224,
      min_size=48,
      data_format=K.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    img_input = Input(tensor=input_tensor, shape=input_shape)

  # Block 1
  x = Conv2D(
      64, (3, 3), activation='relu', padding='same',
      name='block1_conv1')(img_input)
  x = Conv2D(
      64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

  # Block 2
  x = Conv2D(
      128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
  x = Conv2D(
      128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

  # Block 3
  x = Conv2D(
      256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
  x = Conv2D(
      256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
  x = Conv2D(
      256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

  # Block 4
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

  # Block 5
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
  x = Conv2D(
      512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
  x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

  if include_top:
    # Classification block
    x = Flatten(name='flatten')(x)
    x = Dense(4096, activation='relu', name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='vgg16')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models')
    else:
      weights_path = get_file(
          'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models')
    model.load_weights(weights_path)
    if K.backend() == 'theano':
      layer_utils.convert_all_kernels_in_model(model)

    if K.image_data_format() == 'channels_first':
      if include_top:
        maxpool = model.get_layer(name='block5_pool')
        shape = maxpool.output_shape[1:]
        dense = model.get_layer(name='fc1')
        layer_utils.convert_dense_weights_data_format(dense, shape,
                                                      'channels_first')
  return model
Esempio n. 24
0
def MobileNet(input_shape=None,  # pylint: disable=invalid-name
              alpha=1.0,
              depth_multiplier=1,
              dropout=1e-3,
              include_top=True,
              weights='imagenet',
              input_tensor=None,
              pooling=None,
              classes=1000):
  """Instantiates the MobileNet architecture.

  Note that only TensorFlow is supported for now,
  therefore it only works with the data format
  `image_data_format='channels_last'` in your Keras config
  at `~/.keras/keras.json`.

  To load a MobileNet model via `load_model`, import the custom
  objects `relu6` and `DepthwiseConv2D` and pass them to the
  `custom_objects` parameter.
  E.g.
  model = load_model('mobilenet.h5', custom_objects={
                     'relu6': mobilenet.relu6,
                     'DepthwiseConv2D': mobilenet.DepthwiseConv2D})

  Arguments:
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or (3, 224, 224) (with `channels_first` data format).
          It should have exactly 3 input channels,
          and width and height should be no smaller than 32.
          E.g. `(200, 200, 3)` would be one valid value.
      alpha: controls the width of the network.
          - If `alpha` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `alpha` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `alpha` = 1, default number of filters from the paper
               are used at each layer.
      depth_multiplier: depth multiplier for depthwise convolution
          (also called the resolution multiplier)
      dropout: dropout rate
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: `None` (random initialization) or
          `imagenet` (ImageNet weights)
      input_tensor: optional Keras tensor (i.e. output of
          `layers.Input()`)
          to use as image input for the model.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model
              will be the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a
              2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """

  if K.backend() != 'tensorflow':
    raise RuntimeError('Only TensorFlow backend is currently supported, '
                       'as other backends do not support '
                       'depthwise convolution.')

  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as ImageNet with `include_top` '
                     'as true, `classes` should be 1000')

  # Determine proper input shape.
  if input_shape is None:
    default_size = 224
  else:
    if K.image_data_format() == 'channels_first':
      rows = input_shape[1]
      cols = input_shape[2]
    else:
      rows = input_shape[0]
      cols = input_shape[1]
    if rows == cols and rows in [128, 160, 192, 224]:
      default_size = rows
    else:
      default_size = 224
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=K.image_data_format(),
      require_flatten=include_top,
      weights=weights)
  if K.image_data_format() == 'channels_last':
    row_axis, col_axis = (0, 1)
  else:
    row_axis, col_axis = (1, 2)
  rows = input_shape[row_axis]
  cols = input_shape[col_axis]

  if weights == 'imagenet':
    if depth_multiplier != 1:
      raise ValueError('If imagenet weights are being loaded, '
                       'depth multiplier must be 1')

    if alpha not in [0.25, 0.50, 0.75, 1.0]:
      raise ValueError('If imagenet weights are being loaded, '
                       'alpha can be one of'
                       '`0.25`, `0.50`, `0.75` or `1.0` only.')

    if rows != cols or rows not in [128, 160, 192, 224]:
      raise ValueError('If imagenet weights are being loaded, '
                       'input must have a static square shape (one of '
                       '(128,128), (160,160), (192,192), or (224, 224)).'
                       ' Input shape provided = %s' % (input_shape,))

  if K.image_data_format() != 'channels_last':
    warnings.warn('The MobileNet family of models is only available '
                  'for the input data format "channels_last" '
                  '(width, height, channels). '
                  'However your settings specify the default '
                  'data format "channels_first" (channels, width, height).'
                  ' You should set `image_data_format="channels_last"` '
                  'in your Keras config located at ~/.keras/keras.json. '
                  'The model being returned right now will expect inputs '
                  'to follow the "channels_last" data format.')
    K.set_image_data_format('channels_last')
    old_data_format = 'channels_first'
  else:
    old_data_format = None

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    if not K.is_keras_tensor(input_tensor):
      img_input = Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  x = _conv_block(img_input, 32, alpha, strides=(2, 2))
  x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

  x = _depthwise_conv_block(
      x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2)
  x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

  x = _depthwise_conv_block(
      x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4)
  x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

  x = _depthwise_conv_block(
      x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
  x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

  x = _depthwise_conv_block(
      x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12)
  x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

  if include_top:
    if K.image_data_format() == 'channels_first':
      shape = (int(1024 * alpha), 1, 1)
    else:
      shape = (1, 1, int(1024 * alpha))

    x = GlobalAveragePooling2D()(x)
    x = Reshape(shape, name='reshape_1')(x)
    x = Dropout(dropout, name='dropout')(x)
    x = Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x)
    x = Activation('softmax', name='act_softmax')(x)
    x = Reshape((classes,), name='reshape_2')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  model = Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))

  # load weights
  if weights == 'imagenet':
    if K.image_data_format() == 'channels_first':
      raise ValueError('Weights for "channels_last" format '
                       'are not available.')
    if alpha == 1.0:
      alpha_text = '1_0'
    elif alpha == 0.75:
      alpha_text = '7_5'
    elif alpha == 0.50:
      alpha_text = '5_0'
    else:
      alpha_text = '2_5'

    if include_top:
      model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
      weigh_path = BASE_WEIGHT_PATH + model_name
      weights_path = get_file(model_name, weigh_path, cache_subdir='models')
    else:
      model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
      weigh_path = BASE_WEIGHT_PATH + model_name
      weights_path = get_file(model_name, weigh_path, cache_subdir='models')
    model.load_weights(weights_path)

  if old_data_format:
    K.set_image_data_format(old_data_format)
  return model
Esempio n. 25
0
def MobileNet(
        input_shape=None,  # pylint: disable=invalid-name
        alpha=1.0,
        depth_multiplier=1,
        dropout=1e-3,
        include_top=True,
        weights='imagenet',
        input_tensor=None,
        pooling=None,
        classes=1000):
    """Instantiates the MobileNet architecture.

  Note that only TensorFlow is supported for now,
  therefore it only works with the data format
  `image_data_format='channels_last'` in your Keras config
  at `~/.keras/keras.json`.

  To load a MobileNet model via `load_model`, import the custom
  objects `relu6` and `DepthwiseConv2D` and pass them to the
  `custom_objects` parameter.
  E.g.
  model = load_model('mobilenet.h5', custom_objects={
                     'relu6': mobilenet.relu6,
                     'DepthwiseConv2D': mobilenet.DepthwiseConv2D})

  Arguments:
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or (3, 224, 224) (with `channels_first` data format).
          It should have exactly 3 input channels,
          and width and height should be no smaller than 32.
          E.g. `(200, 200, 3)` would be one valid value.
      alpha: controls the width of the network.
          - If `alpha` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `alpha` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `alpha` = 1, default number of filters from the paper
               are used at each layer.
      depth_multiplier: depth multiplier for depthwise convolution
          (also called the resolution multiplier)
      dropout: dropout rate
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: `None` (random initialization) or
          `imagenet` (ImageNet weights)
      input_tensor: optional Keras tensor (i.e. output of
          `layers.Input()`)
          to use as image input for the model.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model
              will be the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a
              2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """

    if K.backend() != 'tensorflow':
        raise RuntimeError('Only TensorFlow backend is currently supported, '
                           'as other backends do not support '
                           'depthwise convolution.')

    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as ImageNet with `include_top` '
                         'as true, `classes` should be 1000')

    # Determine proper input shape.
    if input_shape is None:
        default_size = 224
    else:
        if K.image_data_format() == 'channels_first':
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]
        if rows == cols and rows in [128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=default_size,
                                      min_size=32,
                                      data_format=K.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)
    if K.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == 'imagenet':
        if depth_multiplier != 1:
            raise ValueError('If imagenet weights are being loaded, '
                             'depth multiplier must be 1')

        if alpha not in [0.25, 0.50, 0.75, 1.0]:
            raise ValueError('If imagenet weights are being loaded, '
                             'alpha can be one of'
                             '`0.25`, `0.50`, `0.75` or `1.0` only.')

        if rows != cols or rows not in [128, 160, 192, 224]:
            raise ValueError('If imagenet weights are being loaded, '
                             'input must have a static square shape (one of '
                             '(128,128), (160,160), (192,192), or (224, 224)).'
                             ' Input shape provided = %s' % (input_shape, ))

    if K.image_data_format() != 'channels_last':
        warnings.warn('The MobileNet family of models is only available '
                      'for the input data format "channels_last" '
                      '(width, height, channels). '
                      'However your settings specify the default '
                      'data format "channels_first" (channels, width, height).'
                      ' You should set `image_data_format="channels_last"` '
                      'in your Keras config located at ~/.keras/keras.json. '
                      'The model being returned right now will expect inputs '
                      'to follow the "channels_last" data format.')
        K.set_image_data_format('channels_last')
        old_data_format = 'channels_first'
    else:
        old_data_format = None

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = _conv_block(img_input, 32, alpha, strides=(2, 2))
    x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

    x = _depthwise_conv_block(x,
                              128,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=2)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

    x = _depthwise_conv_block(x,
                              256,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=4)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

    x = _depthwise_conv_block(x,
                              512,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=6)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

    x = _depthwise_conv_block(x,
                              1024,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=12)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

    if include_top:
        if K.image_data_format() == 'channels_first':
            shape = (int(1024 * alpha), 1, 1)
        else:
            shape = (1, 1, int(1024 * alpha))

        x = GlobalAveragePooling2D()(x)
        x = Reshape(shape, name='reshape_1')(x)
        x = Dropout(dropout, name='dropout')(x)
        x = Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x)
        x = Activation('softmax', name='act_softmax')(x)
        x = Reshape((classes, ), name='reshape_2')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))

    # load weights
    if weights == 'imagenet':
        if K.image_data_format() == 'channels_first':
            raise ValueError('Weights for "channels_last" format '
                             'are not available.')
        if alpha == 1.0:
            alpha_text = '1_0'
        elif alpha == 0.75:
            alpha_text = '7_5'
        elif alpha == 0.50:
            alpha_text = '5_0'
        else:
            alpha_text = '2_5'

        if include_top:
            model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
            weigh_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(model_name,
                                    weigh_path,
                                    cache_subdir='models')
        else:
            model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
            weigh_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(model_name,
                                    weigh_path,
                                    cache_subdir='models')
        model.load_weights(weights_path)

    if old_data_format:
        K.set_image_data_format(old_data_format)
    return model
Esempio n. 26
0
  def set_model(self, model):
    self.model = model
    self.sess = K.get_session()
    if self.histogram_freq and self.merged is None:
      for layer in self.model.layers:
        for weight in layer.weights:
          mapped_weight_name = weight.name.replace(':', '_')
          tf_summary.histogram(mapped_weight_name, weight)
          if self.write_grads:
            grads = model.optimizer.get_gradients(model.total_loss, weight)
            tf_summary.histogram('{}_grad'.format(mapped_weight_name), grads)
          if self.write_images:
            w_img = array_ops.squeeze(weight)
            shape = K.int_shape(w_img)
            if len(shape) == 2:  # dense layer kernel case
              if shape[0] > shape[1]:
                w_img = array_ops.transpose(w_img)
                shape = K.int_shape(w_img)
              w_img = array_ops.reshape(w_img, [1, shape[0], shape[1], 1])
            elif len(shape) == 3:  # convnet case
              if K.image_data_format() == 'channels_last':
                # switch to channels_first to display
                # every kernel as a separate image
                w_img = array_ops.transpose(w_img, perm=[2, 0, 1])
                shape = K.int_shape(w_img)
              w_img = array_ops.reshape(w_img,
                                        [shape[0], shape[1], shape[2], 1])
            elif len(shape) == 1:  # bias case
              w_img = array_ops.reshape(w_img, [1, shape[0], 1, 1])
            else:
              # not possible to handle 3D convnets etc.
              continue

            shape = K.int_shape(w_img)
            assert len(shape) == 4 and shape[-1] in [1, 3, 4]
            tf_summary.image(mapped_weight_name, w_img)

        if hasattr(layer, 'output'):
          tf_summary.histogram('{}_out'.format(layer.name), layer.output)
    self.merged = tf_summary.merge_all()

    if self.write_graph:
      self.writer = tf_summary.FileWriter(self.log_dir, self.sess.graph)
    else:
      self.writer = tf_summary.FileWriter(self.log_dir)

    if self.embeddings_freq:
      embeddings_layer_names = self.embeddings_layer_names

      if not embeddings_layer_names:
        embeddings_layer_names = [
            layer.name for layer in self.model.layers
            if type(layer).__name__ == 'Embedding'
        ]

      embeddings = {
          layer.name: layer.weights[0]
          for layer in self.model.layers if layer.name in embeddings_layer_names
      }

      self.saver = saver_lib.Saver(list(embeddings.values()))

      embeddings_metadata = {}

      if not isinstance(self.embeddings_metadata, str):
        embeddings_metadata = self.embeddings_metadata
      else:
        embeddings_metadata = {
            layer_name: self.embeddings_metadata
            for layer_name in embeddings.keys()
        }

      config = projector.ProjectorConfig()
      self.embeddings_ckpt_path = os.path.join(self.log_dir,
                                               'keras_embedding.ckpt')

      for layer_name, tensor in embeddings.items():
        embedding = config.embeddings.add()
        embedding.tensor_name = tensor.name

        if layer_name in embeddings_metadata:
          embedding.metadata_path = embeddings_metadata[layer_name]

      projector.visualize_embeddings(self.writer, config)
Esempio n. 27
0
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.contrib.keras.python.keras.callbacks import TensorBoard
from tensorflow.contrib.keras.python.keras.datasets import mnist
from tensorflow.contrib.keras.python.keras.engine import Input, Model
from tensorflow.contrib.keras.python.keras.layers import Dense, Conv2D, MaxPooling2D, UpSampling2D
from tensorflow.contrib.keras.python.keras import backend as K


(x_train, _), (x_test, _) = mnist.load_data()

if K.image_data_format() == 'channels_last':
    shape_ord = (28, 28, 1)
else:
    shape_ord = (1, 28, 28)

(x_train, _), (x_test, _) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.

x_train = np.reshape(x_train, ((x_train.shape[0],) + shape_ord))
x_test = np.reshape(x_test, ((x_test.shape[0],) + shape_ord))




input_img = Input(shape=(28, 28, 1))

x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
Esempio n. 28
0
def InceptionV3(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
  """Instantiates the Inception v3 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.
  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.
  Note that the default input image size for this model is 299x299.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(299, 299, 3)` (with `channels_last` data format)
          or `(3, 299, 299)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 139.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=299,
      min_size=139,
      data_format=K.image_data_format(),
      include_top=include_top)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    img_input = Input(tensor=input_tensor, shape=input_shape)

  if K.image_data_format() == 'channels_first':
    channel_axis = 1
  else:
    channel_axis = 3

  x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
  x = conv2d_bn(x, 32, 3, 3, padding='valid')
  x = conv2d_bn(x, 64, 3, 3)
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv2d_bn(x, 80, 1, 1, padding='valid')
  x = conv2d_bn(x, 192, 3, 3, padding='valid')
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  # mixed 0, 1, 2: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed0')

  # mixed 1: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed1')

  # mixed 2: 35 x 35 x 256
  branch1x1 = conv2d_bn(x, 64, 1, 1)

  branch5x5 = conv2d_bn(x, 48, 1, 1)
  branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch5x5, branch3x3dbl, branch_pool],
      axis=channel_axis,
      name='mixed2')

  # mixed 3: 17 x 17 x 768
  branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

  branch3x3dbl = conv2d_bn(x, 64, 1, 1)
  branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
  branch3x3dbl = conv2d_bn(
      branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate(
      [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3')

  # mixed 4: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 128, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 128, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch7x7, branch7x7dbl, branch_pool],
      axis=channel_axis,
      name='mixed4')

  # mixed 5, 6: 17 x 17 x 768
  for i in range(2):
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 160, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 160, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch7x7, branch7x7dbl, branch_pool],
        axis=channel_axis,
        name='mixed' + str(5 + i))

  # mixed 7: 17 x 17 x 768
  branch1x1 = conv2d_bn(x, 192, 1, 1)

  branch7x7 = conv2d_bn(x, 192, 1, 1)
  branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
  branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

  branch7x7dbl = conv2d_bn(x, 192, 1, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
  branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

  branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
  branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
  x = layers.concatenate(
      [branch1x1, branch7x7, branch7x7dbl, branch_pool],
      axis=channel_axis,
      name='mixed7')

  # mixed 8: 8 x 8 x 1280
  branch3x3 = conv2d_bn(x, 192, 1, 1)
  branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding='valid')

  branch7x7x3 = conv2d_bn(x, 192, 1, 1)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
  branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
  branch7x7x3 = conv2d_bn(
      branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid')

  branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x)
  x = layers.concatenate(
      [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8')

  # mixed 9: 8 x 8 x 2048
  for i in range(2):
    branch1x1 = conv2d_bn(x, 320, 1, 1)

    branch3x3 = conv2d_bn(x, 384, 1, 1)
    branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
    branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
    branch3x3 = layers.concatenate(
        [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i))

    branch3x3dbl = conv2d_bn(x, 448, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
    branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
    branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
    branch3x3dbl = layers.concatenate(
        [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis)

    branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate(
        [branch1x1, branch3x3, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed' + str(9 + i))
  if include_top:
    # Classification block
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
  else:
    if pooling == 'avg':
      x = GlobalAveragePooling2D()(x)
    elif pooling == 'max':
      x = GlobalMaxPooling2D()(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, x, name='inception_v3')

  # load weights
  if weights == 'imagenet':
    if K.image_data_format() == 'channels_first':
      if K.backend() == 'tensorflow':
        warnings.warn('You are using the TensorFlow backend, yet you '
                      'are using the Theano '
                      'image data format convention '
                      '(`image_data_format="channels_first"`). '
                      'For best performance, set '
                      '`image_data_format="channels_last"` in '
                      'your Keras config '
                      'at ~/.keras/keras.json.')
    if include_top:
      weights_path = get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          md5_hash='9a0d58056eeedaa3f26cb7ebd46da564')
    else:
      weights_path = get_file(
          'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5',
          WEIGHTS_PATH_NO_TOP,
          cache_subdir='models',
          md5_hash='bcbd6486424b2319ff4ef7d526e38f63')
    model.load_weights(weights_path)
    if K.backend() == 'theano':
      convert_all_kernels_in_model(model)
  return model
Esempio n. 29
0
  def __init__(self,
               directory,
               image_data_generator,
               target_size=(256, 256),
               color_mode='rgb',
               classes=None,
               class_mode='categorical',
               batch_size=32,
               shuffle=True,
               seed=None,
               data_format=None,
               save_to_dir=None,
               save_prefix='',
               save_format='png',
               follow_links=False):
    if data_format is None:
      data_format = K.image_data_format()
    self.directory = directory
    self.image_data_generator = image_data_generator
    self.target_size = tuple(target_size)
    if color_mode not in {'rgb', 'grayscale'}:
      raise ValueError('Invalid color mode:', color_mode,
                       '; expected "rgb" or "grayscale".')
    self.color_mode = color_mode
    self.data_format = data_format
    if self.color_mode == 'rgb':
      if self.data_format == 'channels_last':
        self.image_shape = self.target_size + (3,)
      else:
        self.image_shape = (3,) + self.target_size
    else:
      if self.data_format == 'channels_last':
        self.image_shape = self.target_size + (1,)
      else:
        self.image_shape = (1,) + self.target_size
    self.classes = classes
    if class_mode not in {'categorical', 'binary', 'sparse', 'input', None}:
      raise ValueError('Invalid class_mode:', class_mode,
                       '; expected one of "categorical", '
                       '"binary", "sparse", "input"'
                       ' or None.')
    self.class_mode = class_mode
    self.save_to_dir = save_to_dir
    self.save_prefix = save_prefix
    self.save_format = save_format

    white_list_formats = {'png', 'jpg', 'jpeg', 'bmp', 'ppm'}

    # first, count the number of samples and classes
    self.samples = 0

    if not classes:
      classes = []
      for subdir in sorted(os.listdir(directory)):
        if os.path.isdir(os.path.join(directory, subdir)):
          classes.append(subdir)
    self.num_class = len(classes)
    self.class_indices = dict(zip(classes, range(len(classes))))

    pool = multiprocessing.pool.ThreadPool()
    function_partial = partial(
        _count_valid_files_in_directory,
        white_list_formats=white_list_formats,
        follow_links=follow_links)
    self.samples = sum(
        pool.map(function_partial, (os.path.join(directory, subdir)
                                    for subdir in classes)))

    print('Found %d images belonging to %d classes.' % (self.samples,
                                                        self.num_class))

    # second, build an index of the images in the different class subfolders
    results = []

    self.filenames = []
    self.classes = np.zeros((self.samples,), dtype='int32')
    i = 0
    for dirpath in (os.path.join(directory, subdir) for subdir in classes):
      results.append(
          pool.apply_async(_list_valid_filenames_in_directory, (
              dirpath, white_list_formats, self.class_indices, follow_links)))
    for res in results:
      classes, filenames = res.get()
      self.classes[i:i + len(classes)] = classes
      self.filenames += filenames
      i += len(classes)
    pool.close()
    pool.join()
    super(DirectoryIterator, self).__init__(self.samples, batch_size, shuffle,
                                            seed)
Esempio n. 30
0
def train():

    train_dir = './data'
    logs_train_dir = './logs/train/'
    #logs_val_dir = './logs/val/'

    train, train_label, val, val_label = input_train_val_split_keras.get_Data(
        train_dir, RATIO)

    # Convert class vectors to binary class matrices.
    train_label = np_utils.to_categorical(train_label, N_CLASSES)
    val_label = np_utils.to_categorical(val_label, N_CLASSES)

    # Input image dimensions.
    if K.image_data_format() == 'channels_first':
        input_shape = (3, IMG_W, IMG_H)
    else:
        input_shape = (IMG_W, IMG_H, 3)

    model = model_keras.inference(input_shape=input_shape, N_CLASSES=N_CLASSES)

    model.compile(
        loss='categorical_crossentropy',
        #optimizer=Adam(lr = model_keras.lr_schedule(0)),
        optimizer='Adam',
        metrics=['accuracy'])

    model.summary()

    # Prepare model model saving directory.
    save_dir = os.path.join(logs_train_dir, 'saved_models')
    #model_name = 'cifar10_%s_model.{epoch:03d}.h5' % 'test'
    model_name = 'weights.{epoch:02d}-{val_acc:.2f}.hdf5'
    model_name_first = 'first_try.h5'
    print(model_name)
    if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
    filepath = os.path.join(save_dir, model_name)
    filepath_first = os.path.join(save_dir, model_name_first)

    # Prepare callbacks for model saving and for learning rate adjustment.
    checkpoint = ModelCheckpoint(filepath=filepath,
                                 monitor='val_acc',
                                 verbose=1,
                                 save_best_only=True)

    lr_scheduler = LearningRateScheduler(model_keras.lr_schedule)

    #lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1),
    #                            cooldown=0,
    #                            patience=5,
    #                            min_lr=0.5e-6)

    #callbacks = [checkpoint, lr_reducer, lr_scheduler]
    callbacks = [checkpoint, lr_scheduler]

    # Run training, with or without data augmentation.
    if not data_augmentation:
        print('Not using data augmentation.')
        #print('train.shape = {}'.format(train.shape))
        #print('train_label.shape = {}'.format(train_label.shape))
        #print('val.shape = {}'.format(val.shape))
        #print('val_label.shape = {}'.format(val_label.shape))
        train_history = model.fit(train,
                                  train_label,
                                  batch_size=BATCH_SIZE,
                                  epochs=epochs,
                                  validation_data=(val, val_label),
                                  shuffle=True,
                                  callbacks=callbacks)
    else:
        print('Using real-time data augmentation.')
        # This will do preprocessing and realtime data augmentation:
        datagen = ImageDataGenerator(
            # set input mean to 0 over the dataset
            featurewise_center=False,
            # set each sample mean to 0
            samplewise_center=False,
            # divide inputs by std of dataset
            featurewise_std_normalization=False,
            # divide each input by its std
            samplewise_std_normalization=False,
            # apply ZCA whitening
            zca_whitening=False,
            # randomly rotate images in the range (deg 0 to 180)
            rotation_range=0,
            # randomly shift images horizontally
            width_shift_range=0.1,
            # randomly shift images vertically
            height_shift_range=0.1,
            # randomly flip images
            horizontal_flip=True,
            # randomly flip images
            vertical_flip=False)

        # Compute quantities required for featurewise normalization
        # (std, mean, and principal components if ZCA whitening is applied).
        datagen.fit(train)

        # Fit the model on the batches generated by datagen.flow().
        train_history = model.fit_generator(datagen.flow(
            train, train_label, batch_size=BATCH_SIZE),
                                            validation_data=(val, val_label),
                                            epochs=epochs,
                                            verbose=1,
                                            workers=4,
                                            callbacks=callbacks)

    model.save_weights(filepath_first)

    # Score trained model.
    scores = model.evaluate(train, train_label, verbose=1)
    print('\r\nTrain loss:', scores[0])
    print('\r\nTrain accuracy:', scores[1])

    scores = model.evaluate(val, val_label, verbose=1)
    print('\r\nTest loss:', scores[0])
    print('\r\nTest accuracy:', scores[1])

    show_train_history(train_history, 'acc', 'val_acc')
Esempio n. 31
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
  """Instantiates the ResNet50 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 197.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
  if weights not in {'imagenet', None}:
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization) or `imagenet` '
                     '(pre-training on ImageNet).')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as imagenet with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = _obtain_input_shape(
      input_shape,
      default_size=224,
      min_size=197,
      data_format=K.image_data_format(),
      include_top=include_top)

  if input_tensor is None:
    img_input = Input(shape=input_shape)
  else:
    img_input = Input(tensor=input_tensor, shape=input_shape)

  if K.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1

  x = ZeroPadding2D((3, 3))(img_input)
  x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
  x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
  x = Activation('relu')(x)
  x = MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

  x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

  x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
  x0 = x

  x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')


  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = get_source_inputs(input_tensor)
  else:
    inputs = img_input
  # Create model.
  model = Model(inputs, [x, x0], name='resnet50')

  # load weights
  if weights == 'imagenet':
    if include_top:
      weights_path = get_file(
          'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
          WEIGHTS_PATH,
          cache_subdir='models',
          md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
    else:
      weights_path = "./saved_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5"
    model.load_weights(weights_path)
  return model
Esempio n. 32
0
def _depthwise_conv_block(inputs,
                          pointwise_conv_filters,
                          alpha,
                          depth_multiplier=1,
                          strides=(1, 1),
                          block_id=1):
  """Adds a depthwise convolution block.

  A depthwise convolution block consists of a depthwise conv,
  batch normalization, relu6, pointwise convolution,
  batch normalization and relu6 activation.

  Arguments:
      inputs: Input tensor of shape `(rows, cols, channels)`
          (with `channels_last` data format) or
          (channels, rows, cols) (with `channels_first` data format).
      pointwise_conv_filters: Integer, the dimensionality of the output space
          (i.e. the number output of filters in the pointwise convolution).
      alpha: controls the width of the network.
          - If `alpha` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `alpha` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `alpha` = 1, default number of filters from the paper
               are used at each layer.
      depth_multiplier: The number of depthwise convolution output channels
          for each input channel.
          The total number of depthwise convolution output
          channels will be equal to `filters_in * depth_multiplier`.
      strides: An integer or tuple/list of 2 integers,
          specifying the strides of the convolution along the width and height.
          Can be a single integer to specify the same value for
          all spatial dimensions.
          Specifying any stride value != 1 is incompatible with specifying
          any `dilation_rate` value != 1.
      block_id: Integer, a unique identification designating the block number.

  Input shape:
      4D tensor with shape:
      `(batch, channels, rows, cols)` if data_format='channels_first'
      or 4D tensor with shape:
      `(batch, rows, cols, channels)` if data_format='channels_last'.

  Output shape:
      4D tensor with shape:
      `(batch, filters, new_rows, new_cols)` if data_format='channels_first'
      or 4D tensor with shape:
      `(batch, new_rows, new_cols, filters)` if data_format='channels_last'.
      `rows` and `cols` values might have changed due to stride.

  Returns:
      Output tensor of block.
  """
  channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
  pointwise_conv_filters = int(pointwise_conv_filters * alpha)

  x = DepthwiseConv2D(  # pylint: disable=not-callable
      (3, 3),
      padding='same',
      depth_multiplier=depth_multiplier,
      strides=strides,
      use_bias=False,
      name='conv_dw_%d' % block_id)(inputs)
  x = BatchNormalization(axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x)
  x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x)

  x = Conv2D(
      pointwise_conv_filters, (1, 1),
      padding='same',
      use_bias=False,
      strides=(1, 1),
      name='conv_pw_%d' % block_id)(x)
  x = BatchNormalization(axis=channel_axis, name='conv_pw_%d_bn' % block_id)(x)
  return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)
Esempio n. 33
0
def Xception(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000):
    """Instantiates the Xception architecture.

  Optionally loads weights pre-trained
  on ImageNet. This model is available for TensorFlow only,
  and can only be used with inputs following the TensorFlow
  data format `(width, height, channels)`.
  You should set `image_data_format="channels_last"` in your Keras config
  located at ~/.keras/keras.json.

  Note that the default input image size for this model is 299x299.

  Arguments:
      include_top: whether to include the fully-connected
          layer at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(299, 299, 3)`.
          It should have exactly 3 input channels,
          and width and height should be no smaller than 71.
          E.g. `(150, 150, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
      RuntimeError: If attempting to run this model with a
          backend that does not support separable convolutions.
  """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')

    if K.backend() != 'tensorflow':
        raise RuntimeError('The Xception model is only available with '
                           'the TensorFlow backend.')
    if K.image_data_format() != 'channels_last':
        logging.warning(
            'The Xception model is only available for the '
            'input data format "channels_last" '
            '(width, height, channels). '
            'However your settings specify the default '
            'data format "channels_first" (channels, width, height). '
            'You should set `image_data_format="channels_last"` in your Keras '
            'config located at ~/.keras/keras.json. '
            'The model being returned right now will expect inputs '
            'to follow the "channels_last" data format.')
        K.set_image_data_format('channels_last')
        old_data_format = 'channels_first'
    else:
        old_data_format = None

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=299,
                                      min_size=71,
                                      data_format=K.image_data_format(),
                                      require_flatten=False,
                                      weights=weights)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        img_input = Input(tensor=input_tensor, shape=input_shape)

    x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False,
               name='block1_conv1')(img_input)
    x = BatchNormalization(name='block1_conv1_bn')(x)
    x = Activation('relu', name='block1_conv1_act')(x)
    x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
    x = BatchNormalization(name='block1_conv2_bn')(x)
    x = Activation('relu', name='block1_conv2_act')(x)

    residual = Conv2D(128, (1, 1),
                      strides=(2, 2),
                      padding='same',
                      use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = SeparableConv2D(128, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block2_sepconv1')(x)
    x = BatchNormalization(name='block2_sepconv1_bn')(x)
    x = Activation('relu', name='block2_sepconv2_act')(x)
    x = SeparableConv2D(128, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block2_sepconv2')(x)
    x = BatchNormalization(name='block2_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3),
                     strides=(2, 2),
                     padding='same',
                     name='block2_pool')(x)
    x = layers.add([x, residual])

    residual = Conv2D(256, (1, 1),
                      strides=(2, 2),
                      padding='same',
                      use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block3_sepconv1_act')(x)
    x = SeparableConv2D(256, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block3_sepconv1')(x)
    x = BatchNormalization(name='block3_sepconv1_bn')(x)
    x = Activation('relu', name='block3_sepconv2_act')(x)
    x = SeparableConv2D(256, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block3_sepconv2')(x)
    x = BatchNormalization(name='block3_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3),
                     strides=(2, 2),
                     padding='same',
                     name='block3_pool')(x)
    x = layers.add([x, residual])

    residual = Conv2D(728, (1, 1),
                      strides=(2, 2),
                      padding='same',
                      use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block4_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block4_sepconv1')(x)
    x = BatchNormalization(name='block4_sepconv1_bn')(x)
    x = Activation('relu', name='block4_sepconv2_act')(x)
    x = SeparableConv2D(728, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block4_sepconv2')(x)
    x = BatchNormalization(name='block4_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3),
                     strides=(2, 2),
                     padding='same',
                     name='block4_pool')(x)
    x = layers.add([x, residual])

    for i in range(8):
        residual = x
        prefix = 'block' + str(i + 5)

        x = Activation('relu', name=prefix + '_sepconv1_act')(x)
        x = SeparableConv2D(728, (3, 3),
                            padding='same',
                            use_bias=False,
                            name=prefix + '_sepconv1')(x)
        x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv2_act')(x)
        x = SeparableConv2D(728, (3, 3),
                            padding='same',
                            use_bias=False,
                            name=prefix + '_sepconv2')(x)
        x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv3_act')(x)
        x = SeparableConv2D(728, (3, 3),
                            padding='same',
                            use_bias=False,
                            name=prefix + '_sepconv3')(x)
        x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)

        x = layers.add([x, residual])

    residual = Conv2D(1024, (1, 1),
                      strides=(2, 2),
                      padding='same',
                      use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block13_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block13_sepconv1')(x)
    x = BatchNormalization(name='block13_sepconv1_bn')(x)
    x = Activation('relu', name='block13_sepconv2_act')(x)
    x = SeparableConv2D(1024, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block13_sepconv2')(x)
    x = BatchNormalization(name='block13_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3),
                     strides=(2, 2),
                     padding='same',
                     name='block13_pool')(x)
    x = layers.add([x, residual])

    x = SeparableConv2D(1536, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block14_sepconv1')(x)
    x = BatchNormalization(name='block14_sepconv1_bn')(x)
    x = Activation('relu', name='block14_sepconv1_act')(x)

    x = SeparableConv2D(2048, (3, 3),
                        padding='same',
                        use_bias=False,
                        name='block14_sepconv2')(x)
    x = BatchNormalization(name='block14_sepconv2_bn')(x)
    x = Activation('relu', name='block14_sepconv2_act')(x)

    if include_top:
        x = GlobalAveragePooling2D(name='avg_pool')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='xception')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'xception_weights_tf_dim_ordering_tf_kernels.h5',
                TF_WEIGHTS_PATH,
                cache_subdir='models')
        else:
            weights_path = get_file(
                'xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
                TF_WEIGHTS_PATH_NO_TOP,
                cache_subdir='models')
        model.load_weights(weights_path)

    if old_data_format:
        K.set_image_data_format(old_data_format)
    return model
Esempio n. 34
0
  def __init__(self,
               featurewise_center=False,
               samplewise_center=False,
               featurewise_std_normalization=False,
               samplewise_std_normalization=False,
               zca_whitening=False,
               rotation_range=0.,
               width_shift_range=0.,
               height_shift_range=0.,
               shear_range=0.,
               zoom_range=0.,
               channel_shift_range=0.,
               fill_mode='nearest',
               cval=0.,
               horizontal_flip=False,
               vertical_flip=False,
               rescale=None,
               preprocessing_function=None,
               data_format=None):
    if data_format is None:
      data_format = K.image_data_format()
    self.featurewise_center = featurewise_center
    self.samplewise_center = samplewise_center
    self.featurewise_std_normalization = featurewise_std_normalization
    self.samplewise_std_normalization = samplewise_std_normalization
    self.zca_whitening = zca_whitening
    self.rotation_range = rotation_range
    self.width_shift_range = width_shift_range
    self.height_shift_range = height_shift_range
    self.shear_range = shear_range
    self.zoom_range = zoom_range
    self.channel_shift_range = channel_shift_range
    self.fill_mode = fill_mode
    self.cval = cval
    self.horizontal_flip = horizontal_flip
    self.vertical_flip = vertical_flip
    self.rescale = rescale
    self.preprocessing_function = preprocessing_function

    if data_format not in {'channels_last', 'channels_first'}:
      raise ValueError(
          'data_format should be "channels_last" (channel after row and '
          'column) or "channels_first" (channel before row and column). '
          'Received arg: ', data_format)
    self.data_format = data_format
    if data_format == 'channels_first':
      self.channel_axis = 1
      self.row_axis = 2
      self.col_axis = 3
    if data_format == 'channels_last':
      self.channel_axis = 3
      self.row_axis = 1
      self.col_axis = 2

    self.mean = None
    self.std = None
    self.principal_components = None

    if np.isscalar(zoom_range):
      self.zoom_range = [1 - zoom_range, 1 + zoom_range]
    elif len(zoom_range) == 2:
      self.zoom_range = [zoom_range[0], zoom_range[1]]
    else:
      raise ValueError('zoom_range should be a float or '
                       'a tuple or list of two floats. '
                       'Received arg: ', zoom_range)
Esempio n. 35
0
def _depthwise_conv_block(inputs,
                          pointwise_conv_filters,
                          alpha,
                          depth_multiplier=1,
                          strides=(1, 1),
                          block_id=1):
    """Adds a depthwise convolution block.

  A depthwise convolution block consists of a depthwise conv,
  batch normalization, relu6, pointwise convolution,
  batch normalization and relu6 activation.

  Arguments:
      inputs: Input tensor of shape `(rows, cols, channels)`
          (with `channels_last` data format) or
          (channels, rows, cols) (with `channels_first` data format).
      pointwise_conv_filters: Integer, the dimensionality of the output space
          (i.e. the number output of filters in the pointwise convolution).
      alpha: controls the width of the network.
          - If `alpha` < 1.0, proportionally decreases the number
              of filters in each layer.
          - If `alpha` > 1.0, proportionally increases the number
              of filters in each layer.
          - If `alpha` = 1, default number of filters from the paper
               are used at each layer.
      depth_multiplier: The number of depthwise convolution output channels
          for each input channel.
          The total number of depthwise convolution output
          channels will be equal to `filters_in * depth_multiplier`.
      strides: An integer or tuple/list of 2 integers,
          specifying the strides of the convolution along the width and height.
          Can be a single integer to specify the same value for
          all spatial dimensions.
          Specifying any stride value != 1 is incompatible with specifying
          any `dilation_rate` value != 1.
      block_id: Integer, a unique identification designating the block number.

  Input shape:
      4D tensor with shape:
      `(batch, channels, rows, cols)` if data_format='channels_first'
      or 4D tensor with shape:
      `(batch, rows, cols, channels)` if data_format='channels_last'.

  Output shape:
      4D tensor with shape:
      `(batch, filters, new_rows, new_cols)` if data_format='channels_first'
      or 4D tensor with shape:
      `(batch, new_rows, new_cols, filters)` if data_format='channels_last'.
      `rows` and `cols` values might have changed due to stride.

  Returns:
      Output tensor of block.
  """
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
    pointwise_conv_filters = int(pointwise_conv_filters * alpha)

    x = DepthwiseConv2D(  # pylint: disable=not-callable
        (3, 3),
        padding='same',
        depth_multiplier=depth_multiplier,
        strides=strides,
        use_bias=False,
        name='conv_dw_%d' % block_id)(inputs)
    x = BatchNormalization(axis=channel_axis,
                           name='conv_dw_%d_bn' % block_id)(x)
    x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x)

    x = Conv2D(pointwise_conv_filters, (1, 1),
               padding='same',
               use_bias=False,
               strides=(1, 1),
               name='conv_pw_%d' % block_id)(x)
    x = BatchNormalization(axis=channel_axis,
                           name='conv_pw_%d_bn' % block_id)(x)
    return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)
def get_input_shape(img_height, img_width):
    if K.image_data_format() == 'channels_first':
        input_shape = (3, img_height, img_width)
    else:
        input_shape = (img_height, img_width, 3)
    return input_shape
Esempio n. 37
0
  def set_model(self, model):
    self.model = model
    self.sess = K.get_session()
    if self.histogram_freq and self.merged is None:
      for layer in self.model.layers:
        for weight in layer.weights:
          mapped_weight_name = weight.name.replace(':', '_')
          tf_summary.histogram(mapped_weight_name, weight)
          if self.write_grads:
            grads = model.optimizer.get_gradients(model.total_loss, weight)
            tf_summary.histogram('{}_grad'.format(mapped_weight_name), grads)
          if self.write_images:
            w_img = array_ops.squeeze(weight)
            shape = K.int_shape(w_img)
            if len(shape) == 2:  # dense layer kernel case
              if shape[0] > shape[1]:
                w_img = array_ops.transpose(w_img)
                shape = K.int_shape(w_img)
              w_img = array_ops.reshape(w_img, [1, shape[0], shape[1], 1])
            elif len(shape) == 3:  # convnet case
              if K.image_data_format() == 'channels_last':
                # switch to channels_first to display
                # every kernel as a separate image
                w_img = array_ops.transpose(w_img, perm=[2, 0, 1])
                shape = K.int_shape(w_img)
              w_img = array_ops.reshape(w_img,
                                        [shape[0], shape[1], shape[2], 1])
            elif len(shape) == 1:  # bias case
              w_img = array_ops.reshape(w_img, [1, shape[0], 1, 1])
            else:
              # not possible to handle 3D convnets etc.
              continue

            shape = K.int_shape(w_img)
            assert len(shape) == 4 and shape[-1] in [1, 3, 4]
            tf_summary.image(mapped_weight_name, w_img)

        if hasattr(layer, 'output'):
          tf_summary.histogram('{}_out'.format(layer.name), layer.output)
    self.merged = tf_summary.merge_all()

    if self.write_graph:
      self.writer = tf_summary.FileWriter(self.log_dir, self.sess.graph)
    else:
      self.writer = tf_summary.FileWriter(self.log_dir)

    if self.embeddings_freq:
      embeddings_layer_names = self.embeddings_layer_names

      if not embeddings_layer_names:
        embeddings_layer_names = [
            layer.name for layer in self.model.layers
            if type(layer).__name__ == 'Embedding'
        ]

      embeddings = {
          layer.name: layer.weights[0]
          for layer in self.model.layers if layer.name in embeddings_layer_names
      }

      self.saver = saver_lib.Saver(list(embeddings.values()))

      embeddings_metadata = {}

      if not isinstance(self.embeddings_metadata, str):
        embeddings_metadata = self.embeddings_metadata
      else:
        embeddings_metadata = {
            layer_name: self.embeddings_metadata
            for layer_name in embeddings.keys()
        }

      config = projector.ProjectorConfig()
      self.embeddings_ckpt_path = os.path.join(self.log_dir,
                                               'keras_embedding.ckpt')

      for layer_name, tensor in embeddings.items():
        embedding = config.embeddings.add()
        embedding.tensor_name = tensor.name

        if layer_name in embeddings_metadata:
          embedding.metadata_path = embeddings_metadata[layer_name]

      projector.visualize_embeddings(self.writer, config)
Esempio n. 38
0
    def __init__(self,
                 directory,
                 image_data_generator,
                 target_size=(256, 256),
                 color_mode='rgb',
                 classes=None,
                 class_mode='categorical',
                 batch_size=32,
                 shuffle=True,
                 seed=None,
                 data_format=None,
                 save_to_dir=None,
                 save_prefix='',
                 save_format='png',
                 follow_links=False):
        if data_format is None:
            data_format = K.image_data_format()
        self.directory = directory
        self.image_data_generator = image_data_generator
        self.target_size = tuple(target_size)
        if color_mode not in {'rgb', 'grayscale'}:
            raise ValueError('Invalid color mode:', color_mode,
                             '; expected "rgb" or "grayscale".')
        self.color_mode = color_mode
        self.data_format = data_format
        if self.color_mode == 'rgb':
            if self.data_format == 'channels_last':
                self.image_shape = self.target_size + (3, )
            else:
                self.image_shape = (3, ) + self.target_size
        else:
            if self.data_format == 'channels_last':
                self.image_shape = self.target_size + (1, )
            else:
                self.image_shape = (1, ) + self.target_size
        self.classes = classes
        if class_mode not in {
                'categorical', 'binary', 'sparse', 'input', None
        }:
            raise ValueError(
                'Invalid class_mode:', class_mode,
                '; expected one of "categorical", '
                '"binary", "sparse", "input"'
                ' or None.')
        self.class_mode = class_mode
        self.save_to_dir = save_to_dir
        self.save_prefix = save_prefix
        self.save_format = save_format

        white_list_formats = {'png', 'jpg', 'jpeg', 'bmp'}

        # first, count the number of samples and classes
        self.samples = 0

        if not classes:
            classes = []
            for subdir in sorted(os.listdir(directory)):
                if os.path.isdir(os.path.join(directory, subdir)):
                    classes.append(subdir)
        self.num_class = len(classes)
        self.class_indices = dict(zip(classes, range(len(classes))))

        pool = multiprocessing.pool.ThreadPool()
        function_partial = partial(_count_valid_files_in_directory,
                                   white_list_formats=white_list_formats,
                                   follow_links=follow_links)
        self.samples = sum(
            pool.map(function_partial,
                     (os.path.join(directory, subdir) for subdir in classes)))

        print('Found %d images belonging to %d classes.' %
              (self.samples, self.num_class))

        # second, build an index of the images in the different class subfolders
        results = []

        self.filenames = []
        self.classes = np.zeros((self.samples, ), dtype='int32')
        i = 0
        for dirpath in (os.path.join(directory, subdir) for subdir in classes):
            results.append(
                pool.apply_async(_list_valid_filenames_in_directory,
                                 (dirpath, white_list_formats,
                                  self.class_indices, follow_links)))
        for res in results:
            classes, filenames = res.get()
            self.classes[i:i + len(classes)] = classes
            self.filenames += filenames
            i += len(classes)
        pool.close()
        pool.join()
        super(DirectoryIterator, self).__init__(self.samples, batch_size,
                                                shuffle, seed)
Esempio n. 39
0
def VGG16(include_top=True,
          weights='imagenet',
          input_tensor=None,
          input_shape=None,
          pooling=None,
          classes=1000):
    """Instantiates the VGG16 architecture.

  Optionally loads weights pre-trained
  on ImageNet. Note that when using TensorFlow,
  for best performance you should set
  `image_data_format="channels_last"` in your Keras config
  at ~/.keras/keras.json.

  The model and the weights are compatible with both
  TensorFlow and Theano. The data format
  convention used by the model is the one
  specified in your Keras config file.

  Arguments:
      include_top: whether to include the 3 fully-connected
          layers at the top of the network.
      weights: one of `None` (random initialization)
          or "imagenet" (pre-training on ImageNet).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
          to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
          if `include_top` is False (otherwise the input shape
          has to be `(224, 224, 3)` (with `channels_last` data format)
          or `(3, 224, 224)` (with `channels_first` data format).
          It should have exactly 3 inputs channels,
          and width and height should be no smaller than 48.
          E.g. `(200, 200, 3)` would be one valid value.
      pooling: Optional pooling mode for feature extraction
          when `include_top` is `False`.
          - `None` means that the output of the model will be
              the 4D tensor output of the
              last convolutional layer.
          - `avg` means that global average pooling
              will be applied to the output of the
              last convolutional layer, and thus
              the output of the model will be a 2D tensor.
          - `max` means that global max pooling will
              be applied.
      classes: optional number of classes to classify images
          into, only to be specified if `include_top` is True, and
          if no `weights` argument is specified.

  Returns:
      A Keras model instance.

  Raises:
      ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
  """
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')
    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=48,
                                      data_format=K.image_data_format(),
                                      include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        img_input = Input(tensor=input_tensor, shape=input_shape)

    # Block 1
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv1')(img_input)
    x = Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               name='block1_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv1')(x)
    x = Conv2D(128, (3, 3),
               activation='relu',
               padding='same',
               name='block2_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv1')(x)
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv2')(x)
    x = Conv2D(256, (3, 3),
               activation='relu',
               padding='same',
               name='block3_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv1')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv2')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block4_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv1')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv2')(x)
    x = Conv2D(512, (3, 3),
               activation='relu',
               padding='same',
               name='block5_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    if include_top:
        # Classification block
        x = Flatten(name='flatten')(x)
        x = Dense(4096, activation='relu', name='fc1')(x)
        x = Dense(4096, activation='relu', name='fc2')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='vgg16')

    # load weights
    if weights == 'imagenet':
        if include_top:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models')
        else:
            weights_path = get_file(
                'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models')
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model)

        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='block5_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1')
                layer_utils.convert_dense_weights_data_format(
                    dense, shape, 'channels_first')

            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
    return model
Esempio n. 40
0
epochs = 100
data_augmentation = False

num_classes = 10
num_filters = 64
num_blocks = 4
num_sub_blocks = 2
use_max_pool = False

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

img_rows = x_train.shape[1]
img_cols = x_train.shape[2]
channels = x_train.shape[3]

if K.image_data_format() == 'channels_first':
    img_rows = x_train.shape[2]
    img_cols = x_train.shape[3]
    channels = x_train.shape[1]
    x_train = x_train.reshape(x_train.shape[0], channels, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], channels, img_rows, img_cols)
    input_shape = (channels, img_rows, img_cols)
else:
    img_rows = x_train.shape[1]
    img_cols = x_train.shape[2]
    channels = x_train.shape[3]
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, channels)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, channels)
    input_shape = (img_rows, img_cols, channels)

x_train = x_train.astype('float32') / 255