Esempio n. 1
0
    def __init__(self,
                 layer_id,
                 variables,
                 batch_size,
                 output_shape,
                 input,
                 phase,
                 params,
                 shared_variables=True):

        with tf.variable_scope(layer_id):

            self.input_shape = input.shape.as_list()

            self.bn = batch_norm(input, phase, params, 'batchnorm_input')

            if shared_variables:
                # main decoder pipe, variables are shared between horizontal and vertical
                if variables.stride[2] != 1 or variables.stride[3] != 1:
                    self.bn = tf.stack([
                        resize_bicubic(self.bn[:, i, :, :, :], output_shape)
                        for i in range(0, self.input_shape[1])
                    ],
                                       axis=1)

                self.bn = tf.pad(self.bn,
                                 [[0, 0], [1, 1], [0, 0], [0, 0], [0, 0]],
                                 'SYMMETRIC')
                self.bn = tf.pad(self.bn,
                                 [[0, 0], [0, 0], [1, 1], [1, 1], [0, 0]],
                                 'CONSTANT')
                self.conv = tf.nn.conv3d(self.bn,
                                         variables.decoder_variables_W,
                                         strides=[1, 1, 1, 1, 1],
                                         padding='VALID')
                self.features = resnet_elu(self.conv +
                                           variables.decoder_variables_b)

            if variables.resample:
                # bug (?) workaround: conv3d_transpose with strides does not seem to work, no idea why.
                # instead, we use upsampling + conv3d_transpose without stride.
                self.input_upsampled = input
                if variables.stride[2] != 1 or variables.stride[3] != 1:
                    self.input_upsampled = tf.stack([
                        resize_bicubic(input[:, i, :, :, :], output_shape)
                        for i in range(0, self.input_shape[1])
                    ],
                                                    axis=1)

                identity = tf.nn.conv3d(self.input_upsampled,
                                        variables.decoder_variables_embedding,
                                        strides=[1, 1, 1, 1, 1],
                                        padding='VALID')

            else:
                identity = input

            self.out = self.features + identity
    def create_2D_decoder(self, decoder_config):

        decoder = dict()
        decoder_id = decoder_config['id']
        ids = []
        for i in range(0, len(self.config.layer_config)):
            ids.append(self.config.layer_config[i]['id'])
        pos_layout = ids.index(decoder_id)
        print('creating decoder pipeline ' + decoder_id)

        # create a decoder pathway (center view only)
        with tf.variable_scope(decoder_id):

            decoder['id'] = decoder_id
            decoder['channels'] = decoder_config['channels']
            decoder['loss_fn'] = decoder_config['loss_fn']
            decoder['weight'] = decoder_config['weight']
            decoder['train'] = decoder_config['train']
            decoder['preferred_gpu'] = decoder_config['preferred_gpu']
            decoder['2D_variables'] = []
            decoder['concat_variables'] = []
            decoder['upscale_variables'] = []
            decoder['start'] = self.config.layer_config[pos_layout]['start']
            decoder['end'] = self.config.layer_config[pos_layout]['end']
            decoder['bicubic'] = resize_bicubic(
                self.stack_v[:, self.cv_pos, :, :,
                             decoder['start']:decoder['end']],
                [self.H_HR, self.W_HR])

            sh = self.encoders_3D[decoder_id]['feature_shape']
            decoder['nodes'] = sh[2] * sh[3] * sh[4] * self.config.patch_weight
            decoder['upconv_in'] = layers.bn_dense(
                self.encoders_3D[decoder_id]['features_transposed'],
                self.encoders_3D[decoder_id]['encoder_nodes'],
                decoder['nodes'], self.phase, self.config.training,
                'bn_decoder_' + decoder_id + '_in')

            sh = self.encoders_3D[decoder_id]['feature_shape']
            decoder['upconv'] = tf.reshape(
                decoder['upconv_in'],
                [-1, sh[2], sh[3], sh[4] * self.config.patch_weight])
            decoder['layers'] = []

            ########################################################################################################
            # decoder variables
            layout = []
            layout.insert(0, self.config.layer_config[pos_layout]['layout'][0])
            for i in range(0, len(self.config.layers['encoder_3D'])):
                layout.append(self.config.layers['encoder_3D'][i])

            last_layer = min(len(layout), self.max_layer)
            patches = self.config.nviews
            for i in range(0, last_layer):
                layer_id_cat = "skip_patch_%s_%i" % (decoder_id, i)
                print('    generating decoder ' + layer_id_cat)
                patches = math.ceil(patches / layout[i]['stride'][1])
                decoder['concat_variables'].append(
                    layers.concat_variables(layer_id_cat,
                                            layout[i],
                                            patches,
                                            input_features=[],
                                            output_features=[]))
            # maybe change later
            layer_id_cat = "skip_patch_%s_%i" % (decoder_id, i + 1)
            decoder['concat_variables'].insert(
                0,
                layers.concat_variables(
                    layer_id_cat,
                    layout[i],
                    self.config.nviews,
                    input_features=self.config.layer_config[pos_layout]
                    ['layout'][0]['conv'][-2],
                    output_features=self.config.layer_config[pos_layout]
                    ['upscale'][0]['conv'][-2]))

            layout[0] = self.config.layer_config[pos_layout]['upscale'][0]
            for i in range(0, last_layer):
                layer_id = "decoder_%s_%i" % (decoder_id, i)
                print('    generating upconvolution variables ' + layer_id)
                decoder['2D_variables'].append(
                    layers.decoder_variables_2D(layer_id, layout[i], i,
                                                last_layer,
                                                self.config.patch_weight,
                                                self.config.D))

            for i in range(0, last_layer):
                layer_id = "decoder_%s_layer%i" % (decoder_id,
                                                   last_layer - i - 1)
                layer_id_cat = "skip_patch_%s_layer%i" % (decoder_id,
                                                          last_layer - i - 1)
                print('    generating upconvolution layer structure ' +
                      layer_id)
                out_channels = -1
                # evil hack
                no_relu = False
                decoder['layers'].insert(
                    -1 - i,
                    layers.layer_upconv2d_v2(layer_id,
                                             decoder['2D_variables'][-1 - i],
                                             self.batch_size,
                                             decoder['upconv'],
                                             self.phase,
                                             self.config.training,
                                             out_channels=out_channels,
                                             no_relu=no_relu))
                if self.pinhole:
                    if i != last_layer - 1:
                        concat_cv = layers.layer_conv_one(
                            layer_id_cat, decoder['concat_variables'][-2 - i],
                            layers.layer_concat(
                                self.encoders_3D[decoder_id]['conv_layers_v'][
                                    -2 - i].out, self.encoders_3D[decoder_id]
                                ['conv_layers_h'][-2 - i].out).out).out
                    else:
                        start = self.config.layer_config[pos_layout]['start']
                        end = self.config.layer_config[pos_layout]['end']
                        concat_cv = layers.layer_conv_one(
                            layer_id_cat, decoder['concat_variables'][-2 - i],
                            layers.layer_concat(
                                self.stack_v[:, :, :, :, start:end],
                                self.stack_h[:, :, :, :, start:end]).out).out
                    decoder['upconv'] = tf.concat(
                        [decoder['layers'][-1 - i].out, concat_cv], axis=3)
                else:
                    decoder['upconv'] = decoder['layers'][-1 - i].out

            # decoder['layers'] = tf.reverse(decoder['layers'],0)
            decoder['upconv_reduce'] = decoder[
                'upconv'][:, loss_min_coord_2D:loss_max_coord_2D,
                          loss_min_coord_2D:loss_max_coord_2D, :]

            decoder['input'] = tf.placeholder(
                tf.float32, [None, self.H_HR, self.W_HR, decoder['channels']])
            decoder['input_reduce'] = decoder[
                'input'][:, loss_min_coord_2D:loss_max_coord_2D_1,
                         loss_min_coord_2D:loss_max_coord_2D_1, :]

            layout = []
            for i in range(0, len(self.config.layers['upscale'])):
                layout.append(self.config.layers['upscale'][i])
            last_layer_up = min(len(layout), self.max_layer)
            for i in range(0, last_layer_up):
                layer_id_upscale = "upscale_%s_%i" % (decoder_id, i)
                print('    creating variables for ' + layer_id_upscale)
                decoder['upscale_variables'].append(
                    layers.upscale_variables(layer_id_upscale, layout[i]))

            layout_final = self.config.layer_config[pos_layout]['final'][0]

            no_relu = False
            for upscale in range(0, last_layer_up):
                out_channels = -1
                layer_id = "upscale_%s_%i" % (decoder_id, upscale)
                print('    creating layers for ' + layer_id)

                if upscale == 1:
                    decoder['upconv'] = tf.concat(
                        [decoder['upconv'], decoder['bicubic']], axis=3)

                decoder['upconv'] = layers.layer_upconv2d_v2(
                    layer_id,
                    decoder['upscale_variables'][upscale],
                    self.batch_size,
                    decoder['upconv'],
                    self.phase,
                    self.config.training,
                    out_channels=out_channels,
                    no_relu=no_relu).out

            if self.config.config['ColorSpace'] == 'YUV' or self.config.config[
                    'ColorSpace'] == 'LAB':
                no_relu = True
            decoder['SR'] = layers.layer_pure_conv2D("upscale_final",
                                                     layout_final,
                                                     decoder['upconv'],
                                                     self.phase,
                                                     self.config.training,
                                                     no_relu=no_relu).out

            self.decoders_2D[decoder_id] = decoder
Esempio n. 3
0
    def __init__(self,
                 layer_id,
                 variables,
                 batch_size,
                 output_shape,
                 input,
                 phase,
                 params,
                 shared_variables=True):

        with tf.variable_scope(layer_id):

            self.input_shape = input.shape.as_list()
            self.output_shape = [
                batch_size, output_shape[0] + 2, output_shape[1] + 2,
                variables.C_out
            ]

            self.bn = batch_norm(input, phase, params, 'batchnorm_input')

            if shared_variables:
                # main decoder pipe, variables are shared between horizontal and vertical
                if variables.stride[1] != 1 or variables.stride[2] != 1:
                    self.bn = resize_bicubic(self.bn, output_shape)

                self.conv = tf.nn.conv2d_transpose(
                    self.bn,
                    variables.decoder_variables_W,
                    output_shape=self.output_shape,
                    strides=[1, 1, 1, 1],
                    padding='VALID')

                self.conv = self.conv[:, 1:-1, 1:-1, :]

                self.features = resnet_elu(self.conv +
                                           variables.decoder_variables_b)

            if variables.resample:
                # bug (?) workaround: conv3d_transpose with strides does not seem to work, no idea why.
                # instead, we use upsampling + conv3d_transpose without stride.
                self.input_upsampled = input
                if variables.stride[1] != 1 or variables.stride[2] != 1:
                    self.input_upsampled = resize_bicubic(input, output_shape)

                self.input_upsampled = tf.pad(self.input_upsampled,
                                              [[0, 0], [1, 1], [1, 1], [0, 0]],
                                              'CONSTANT')
                identity = tf.nn.conv2d_transpose(
                    self.input_upsampled,
                    variables.decoder_variables_embedding,
                    output_shape=self.output_shape,
                    strides=[1, 1, 1, 1],
                    padding='VALID')
                # if variables.stride[1] > 1:
                identity = identity[:, 1:-1, 1:-1, :]

            else:
                identity = input

            self.out = self.features + identity
            self.out = self.features
Esempio n. 4
0
    def __init__(self,
                 layer_id,
                 variables,
                 batch_size,
                 input,
                 phase,
                 params,
                 out_channels=-1,
                 no_relu=False):

        with tf.variable_scope(layer_id):

            # define in/out shapes

            self.shape = variables.shape

            self.stride = variables.stride

            # self.input_shape = input.shape.as_list()
            self.input_shape = input.shape

            self.C_in = variables.C_in

            self.C_out = variables.C_out

            self.output_shape = input.shape.as_list()

            self.output_shape[0] = batch_size

            self.output_shape[1] = self.output_shape[1] * self.stride[1]

            self.output_shape[2] = self.output_shape[2] * self.stride[2]

            self.output_shape[3] = self.C_out

            self.W = variables.decoder_variables_W

            self.b = variables.decoder_variables_b

            sh = input.shape.as_list()

            self.resample = variables.resample

            if self.resample:
                self.embedding = variables.decoder_variables_embedding

            if out_channels != -1:
                # output channel override

                self.output_shape[3] = out_channels

                self.shape[2] = out_channels

                self.C_in = out_channels

                self.resample = True

            # generate layers

            self.bn = batch_norm(input, phase, params, 'batchnorm_input')

            if self.stride[1] != 1 or self.stride[2] != 1:
                self.bn = resize_bicubic(
                    self.bn,
                    [np.int(sh[1] * 2), np.int(sh[2] * 2)])

            self.conv = tf.nn.conv2d(self.bn,
                                     self.W,
                                     strides=[1, 1, 1, 1],
                                     padding='SAME')

            if no_relu:

                self.features = self.conv + self.b

            else:

                self.features = resnet_elu(self.conv + self.b)

            if variables.resample:

                if self.stride[1] != 1 or self.stride[2] != 1:

                    self.input_upsampled = resize_bicubic(
                        input, [np.int(sh[1] * 2),
                                np.int(sh[2] * 2)])

                else:

                    self.input_upsampled = input

                identity = tf.nn.conv2d(self.input_upsampled,
                                        self.embedding,
                                        strides=[1, 1, 1, 1],
                                        padding='SAME')

            else:

                identity = input

            self.out = self.features + identity