Esempio n. 1
0
 def call(self, x):
     output_mu = tf.matmul(x, self.kernel_1) + self.bias_1
     output_sig = tf.matmul(x, self.kernel_2) + self.bias_2
     output_sig = softplus(output_sig)
     if self.count_data:
         output_mu = softplus(output_mu)
     return [output_mu, output_sig]
Esempio n. 2
0
 def _softplus(
     self,
     mu: tf.Tensor,
     scale: tf.Tensor,
 ) -> typing.Tuple[tf.Tensor, tf.Tensor]:
     """
     private util function that applies softplus transformation to various parameters
         depending on type of data 
     """
     scale = softplus(scale)
     if self._ts_obj.count_data:
         mu = softplus(mu)
     return mu, scale
Esempio n. 3
0
    def call(self, x):
        X = [0] * 128
        for i in range(self.n_kernels):
            X[i] = softplus(
                K.conv1d(x[:, :, i:i + 1], self.kernels[i], padding='same'))
            K.bias_add(X[i], self.bias[i], data_format=self.data_format)
        X = K.concatenate(X, axis=2)

        return X
Esempio n. 4
0
    def call(self, x):
        rank = len(x.shape)
        X = [0] * x.shape[1]

        for i in range(self.n_kernels):
            # Broadcasting is required for the inputs.
            X[i] = softplus(K.dot(x[:, i:i + 1, :], self.kernels[i]))

            K.bias_add(X[i], self.bias[i], data_format='channels_last')
        X = K.concatenate(X, axis=1)

        return X
Esempio n. 5
0
    def __init__(self,
                memory_size=128,
                word_size=20,
                num_reads=1,
                num_writes=1,
                memory_init_value=1e-6,
                name='memory_access',
                dtype=tf.float32):
        """Creates a MemoryAccess module.

        Args:
            memory_size: The number of memory slots (N in the DNC paper).
            word_size: The width of each memory slot (W in the DNC paper)
            num_reads: The number of read heads (R in the DNC paper).
            num_writes: The number of write heads (fixed at 1 in the paper).
            memory_init_value: The initial value for memory
            name: The name of the module.
        """
        super().__init__(name=name)
        self._memory_size = memory_size
        self._word_size = word_size
        self._num_reads = num_reads
        self._num_writes = num_writes
        self._memory_init_value = tf.convert_to_tensor(memory_init_value, dtype)

        self._write_content_weights_mod = addressing.CosineWeights(
            num_writes, word_size, name='write_content_weights')
        self._read_content_weights_mod = addressing.CosineWeights(
            num_reads, word_size, name='read_content_weights')

        self._linkage = addressing.TemporalLinkage(memory_size, num_writes)
        self._freeness = addressing.Freeness(memory_size)

        Dense = layers.Dense
        sigmoid = activations.sigmoid
        oneplus = lambda x: activations.softplus(x) + 1

        self._layers = dict(
            read_keys=Dense(self._num_reads*self._word_size, name='read_keys', dtype=dtype),
            read_strengths=Dense(self._num_reads, name='read_strengths', activation=oneplus, dtype=dtype),
            write_keys=Dense(self._num_writes*self._word_size, name='write_keys', dtype=dtype),
            write_strengths=Dense(self._num_writes, name='write_strengths', activation=oneplus, dtype=dtype),
            write_vectors=Dense(self._num_writes*self._word_size, name='write_vectors', dtype=dtype),
            erase_vectors=Dense(self._num_writes*self._word_size, activation=sigmoid, name='erase_vectors', dtype=dtype),
            free_gate=Dense(self._num_reads, activation=sigmoid, name='free_gate', dtype=dtype),
            allocation_gate=Dense(self._num_writes, activation=sigmoid, name='allocation_gate', dtype=dtype),
            write_gate=Dense(self._num_writes, activation=sigmoid, name='write_gate', dtype=dtype),
            read_mode=Dense(self._num_reads * (2 * self._num_writes + 1),name='read_mode', dtype=dtype),
        )
Esempio n. 6
0
    def __init__(self):
        self.vae = AutoEncoder()
        # 		def disc_loss_fn(true, out):
        # 			tf.print(true)
        # 			tf.print(out)
        # 			return binary_crossentropy(true, out)
        self.discriminator = self.create_discriminator()
        self.discriminator.compile(Adam(lr=1e-4), loss='binary_crossentropy')

        inp = Input(shape=(*imgdims, 1))
        fake, repr = self.vae.model(inp)
        self.discriminator.trainable = False
        disc = self.discriminator(fake)

        self.complete_model = Model(inp, [disc, repr], name='vae_gan')
        self.complete_model.compile(
            'adam',
            loss=lambda true, out: binary_crossentropy(true[0], out[
                0]) + softplus(img_variety(tf.argmax(out[1])) - 1000) / 100)
    def _build_model(self, transfer_model=None, kernel_regularizer=None, kernel_initializer=None):
        input_shape = (*tuple(self.config.glob.image_size), self.config.glob.image_n_chanel)
        if self.config.model.transfer_model.exist:
            transfer_model = transfer_models[self.config.model.transfer_model.name](
                weights=self.config.model.transfer_model.weights,
                include_top=False,
                input_shape=input_shape
            )

        self.model = Sequential([
            transfer_model,
            GlobalAveragePooling2D()
        ])
        n_layers = len(self.config.model.dense.units)
        dense_units = self.config.model.dense.units
        dense_activation = self.config.model.dense.activation
        dropout_rates = self.config.model.dropout.rates
        n_classes = self.config.glob.n_classes
        if dense_activation == 'tanh_softplus':
            dense_activation = lambda x: x * backend.tanh(activations.softplus(x))
        if self.config.model.kernel_regularizer.exist:
            kernel_regularizer_name = self.config.model.kernel_regularizer.name
            alpha = self.config.model.kernel_regularizer.alpha
            kernel_regularizer = regularizers[kernel_regularizer_name](alpha)
        if self.config.model.kernel_initializer.exist:
            kernel_initializer = self.config.model.kernel_initializer.name
        for units, dropout_rate, _ in zip(dense_units, dropout_rates, range(n_layers)):
            self.model.add(Dense(
                units,
                activation=dense_activation,
                kernel_regularizer=kernel_regularizer,
                kernel_initializer=kernel_initializer
            ))
            self.model.add(BatchNormalization())
            self.model.add(Dropout(rate=dropout_rate))
        self.model.add(Dense(n_classes, activation='softmax'))
Esempio n. 8
0
from tensorflow.keras.activations import softplus, relu
from tensorflow.keras.backend import expand_dims, clip
from tensorflow.keras.layers import Input, Dense, Concatenate
from tensorflow.keras.losses import MeanSquaredError
from tensorflow.keras.models import Model
from tensorflow_probability.python.distributions import Normal

env = gym.make('MountainCarContinuous-v0')
state = env.reset()
state_input = Input(state.shape, name='state_input')
actor_dense1_layer = Dense(4, activation=relu, name='actor_dense1')
actor_dense1 = actor_dense1_layer(state_input)
actor_out_layer = Dense(2, activation=None, name='actor_nn_out')
actor_out = actor_out_layer(actor_dense1)
mean = actor_out[:, 0]
std = softplus(actor_out[:, 1])
dist = Normal(mean, std, name='dist')
action = dist.sample((), name='sample')
action_log_prob = dist.log_prob(action, name='log_prob')
action_log_prob = expand_dims(action_log_prob)
action = expand_dims(action)
action = clip(action, -1.0, 1.0)
critic_concat = Concatenate()([state_input, action])
critic_dense1_layer = Dense(units=8, activation=relu, name='critic_dense1')
critic_dense1 = critic_dense1_layer(critic_concat)
critic_out_layer = Dense(1, activation=None)
critic_out = critic_out_layer(critic_dense1)
actor_critic_model = Model(inputs=[state_input],
                           outputs=[action, action_log_prob, critic_out])
critic_loss_op = MeanSquaredError(name='critic_loss')
actor_vars = actor_dense1_layer.trainable_variables + actor_out_layer.trainable_variables
Esempio n. 9
0
    def _training_loop(
        self,
        filepath: str,
        train_gen: train_ts_generator,  # can name of function be type?
        val_gen: train_ts_generator,
        epochs: int = 100,
        steps_per_epoch: int = 50,
        early_stopping: int = True,
        stopping_patience: int = 5,
        stopping_delta: int = 1,
    ) -> typing.Tuple[tf.Tensor, int]:
        """ 
        util function
            iterates over batches, updates gradients, records metrics, writes to tb, checkpoints, early stopping
        """

        # set up metrics to track during training
        batch_loss_avg = Mean()
        epoch_loss_avg = Mean()
        eval_loss_avg = Mean()
        eval_mae = MeanAbsoluteError()
        eval_rmse = RootMeanSquaredError()

        # set up early stopping callback
        early_stopping_cb = EarlyStopping(patience=stopping_patience,
                                          active=early_stopping,
                                          delta=stopping_delta)

        # setup table for unscaling
        self._lookup_table = build_tf_lookup(self._ts_obj.target_means)

        # Iterate over epochs.
        best_metric = math.inf
        for epoch in range(epochs):
            logger.info(f"Start of epoch {epoch}")
            start_time = time.time()
            for batch, (x_batch_train, cat_labels,
                        y_batch_train) in enumerate(train_gen):

                # compute loss
                with tf.GradientTape(persistent=True) as tape:
                    mu, scale = self._model(x_batch_train, training=True)

                    # softplus parameters
                    scale = softplus(scale)
                    if self._ts_obj.count_data:
                        mu = softplus(mu)

                    mu, scale = unscale(mu, scale, cat_labels,
                                        self._lookup_table)
                    loss_value = self._loss_fn(y_batch_train, (mu, scale))

                # sgd
                if self._tb:
                    tf.summary.scalar("train_loss", loss_value,
                                      epoch * steps_per_epoch + batch)
                batch_loss_avg(loss_value)
                epoch_loss_avg(loss_value)
                grads = tape.gradient(loss_value,
                                      self._model.trainable_weights)
                self._optimizer.apply_gradients(
                    zip(grads, self._model.trainable_weights))

                # Log 5x per epoch.
                if batch % (steps_per_epoch // 5) == 0 and batch != 0:
                    logger.info(
                        f"Epoch {epoch}: Avg train loss over last {(steps_per_epoch // 5)} steps: {batch_loss_avg.result()}"
                    )
                    batch_loss_avg.reset_states()

                # Run each epoch batches times
                epoch_loss_avg_result = epoch_loss_avg.result()
                if batch == steps_per_epoch:
                    logger.info(
                        f"Epoch {epoch} took {round(time.time() - start_time, 0)}s : Avg train loss: {epoch_loss_avg_result}"
                    )
                    break

            # validation
            if val_gen is not None:
                logger.info(f"End of epoch {epoch}, validating...")
                start_time = time.time()
                for batch, (x_batch_val, cat_labels,
                            y_batch_val) in enumerate(val_gen):

                    # compute loss, doesn't need to be persistent bc not updating weights
                    with tf.GradientTape() as tape:

                        # treat as training -> reset lstm states inbetween each batch
                        mu, scale = self._model(x_batch_val, training=True)

                        # softplus parameters
                        mu, scale = self._softplus(mu, scale)

                        # unscale parameters
                        mu, scale = unscale(mu, scale, cat_labels,
                                            self._lookup_table)

                        # calculate loss
                        loss_value = self._loss_fn(y_batch_val, (mu, scale))

                    # log validation metrics (avg loss, avg MAE, avg RMSE)
                    eval_mae(y_batch_val, mu)
                    eval_rmse(y_batch_val, mu)
                    eval_loss_avg(loss_value)
                    if batch == steps_per_epoch:
                        break

                # logging
                eval_mae_result = eval_mae.result()
                logger.info(
                    f"Validation took {round(time.time() - start_time, 0)}s")
                logger.info(
                    f"Epoch {epoch}: Val loss on {steps_per_epoch} steps: {eval_loss_avg.result()}"
                )
                logger.info(
                    f"Epoch {epoch}: Val MAE: {eval_mae_result}, RMSE: {eval_rmse.result()}"
                )
                if self._tb:
                    tf.summary.scalar("val_loss", eval_loss_avg.result(),
                                      epoch)
                    tf.summary.scalar("val_mae", eval_mae_result, epoch)
                    tf.summary.scalar("val_rmse", eval_rmse.result(), epoch)
                new_metric = eval_mae_result

                # early stopping
                if early_stopping_cb(eval_mae_result):
                    break

                # reset metric states
                eval_loss_avg.reset_states()
                eval_mae.reset_states()
                eval_rmse.reset_states()
            else:
                if early_stopping_cb(epoch_loss_avg_result):
                    break
                new_metric = epoch_loss_avg_result

            # update best_metric and save new checkpoint if improvement
            if new_metric < best_metric:
                best_metric = new_metric
                if filepath is not None:
                    self._checkpointer.save(file_prefix=filepath)
                else:
                    self.save_weights("model_best_weights.h5")

            # reset epoch loss metric
            epoch_loss_avg.reset_states()

        # load in best weights before returning if not using checkpointer
        if filepath is None:
            self.load_weights("model_best_weights.h5")
            os.remove("model_best_weights.h5")
        return best_metric, epoch + 1