def __init__(self, mission_file=None, quest_file=None): self.logger = logging.getLogger(__name__) if False: # True if you want to see more information self.logger.setLevel(logging.DEBUG) else: self.logger.setLevel(logging.INFO) self.logger.handlers = [] self.logger.addHandler(logging.StreamHandler(sys.stdout)) self.move_actions = ["movenorth 1", "movesouth 1", "movewest 1", "moveeast 1"] self.learner = DeepQLearner( input_size= (world_bounds[1][0]-world_bounds[0][0]+1) + (world_bounds[1][1]-world_bounds[0][1]+1) + len(logicalActions) + len(triggers), num_actions=len(self.move_actions) + len(logicalActions), load_path='cache/dqn.pkl', save_path='cache/dqn.pkl', verbose=False) self.canvas = None self.root = None goal = [(Proposition("in", [itemVars['diamond'], boundary1Var]), True), (Proposition("in", [itemVars['diamond'], inventoryVar]), True)] self.host = LogicalAgentHost(mission_file, quest_file, logicalActions, goal, triggers, world_bounds) self.gamma = 0.9
def test_is_sequence_applicable(): state = State([ Proposition.parse("at(P, r_1: r)"), Proposition.parse("empty(r_2: r)"), Proposition.parse("empty(r_3: r)"), ]) assert state.is_sequence_applicable([ Action.parse( "go :: at(P, r_1: r) & empty(r_2: r) -> at(P, r_2: r) & empty(r_1: r)" ), Action.parse( "go :: at(P, r_2: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_2: r)" ), ]) assert not state.is_sequence_applicable([ Action.parse( "go :: at(P, r_1: r) & empty(r_2: r) -> at(P, r_2: r) & empty(r_1: r)" ), Action.parse( "go :: at(P, r_1: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_1: r)" ), ]) assert not state.is_sequence_applicable([ Action.parse( "go :: at(P, r_2: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_2: r)" ), Action.parse( "go :: at(P, r_3: r) & empty(r_1: r) -> at(P, r_1: r) & empty(r_3: r)" ), ])
def test_is_sequence_applicable(): state = State(KnowledgeBase.default().logic, [ Proposition.parse("at(P, r_1: r)"), Proposition.parse("empty(r_2: r)"), Proposition.parse("empty(r_3: r)"), ]) assert state.is_sequence_applicable([ Action.parse( "go :: at(P, r_1: r) & empty(r_2: r) -> at(P, r_2: r) & empty(r_1: r)" ), Action.parse( "go :: at(P, r_2: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_2: r)" ), ]) assert not state.is_sequence_applicable([ Action.parse( "go :: at(P, r_1: r) & empty(r_2: r) -> at(P, r_2: r) & empty(r_1: r)" ), Action.parse( "go :: at(P, r_1: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_1: r)" ), ]) assert not state.is_sequence_applicable([ Action.parse( "go :: at(P, r_2: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_2: r)" ), Action.parse( "go :: at(P, r_3: r) & empty(r_1: r) -> at(P, r_1: r) & empty(r_3: r)" ), ])
def test_going_through_door(): P = Variable("P", "P") room = Variable("room", "r") kitchen = Variable("kitchen", "r") state = State(KnowledgeBase.default().logic) state.add_facts([ Proposition("at", [P, room]), Proposition("north_of", [kitchen, room]), Proposition("free", [kitchen, room]), Proposition("free", [room, kitchen]), Proposition("south_of", [room, kitchen]) ]) options = ChainingOptions() options.backward = True options.max_depth = 3 options.max_length = 3 options.subquests = True options.create_variables = True options.rules_per_depth = [ [KnowledgeBase.default().rules["take/c"], KnowledgeBase.default().rules["take/s"]], KnowledgeBase.default().rules.get_matching("go.*"), [KnowledgeBase.default().rules["open/d"]], ] chains = list(get_chains(state, options)) assert len(chains) == 18
def test_parallel_quests(): logic = GameLogic.parse(""" type foo { rules { do_a :: not_a(foo) & $not_c(foo) -> a(foo); do_b :: not_b(foo) & $not_c(foo) -> b(foo); do_c :: $a(foo) & $b(foo) & not_c(foo) -> c(foo); } constraints { a_or_not_a :: a(foo) & not_a(foo) -> fail(); b_or_not_b :: b(foo) & not_b(foo) -> fail(); c_or_not_c :: c(foo) & not_c(foo) -> fail(); } } """) kb = KnowledgeBase(logic, "") state = State(kb.logic, [ Proposition.parse("a(foo)"), Proposition.parse("b(foo)"), Proposition.parse("c(foo)"), ]) options = ChainingOptions() options.backward = True options.kb = kb options.max_depth = 3 options.max_breadth = 1 options.max_length = 3 chains = list(get_chains(state, options)) assert len(chains) == 2 options.max_breadth = 2 chains = list(get_chains(state, options)) assert len(chains) == 3 options.min_breadth = 2 chains = list(get_chains(state, options)) assert len(chains) == 1 assert len(chains[0].actions) == 3 assert chains[0].nodes[0].depth == 2 assert chains[0].nodes[0].breadth == 2 assert chains[0].nodes[0].parent == chains[0].nodes[2] assert chains[0].nodes[1].depth == 2 assert chains[0].nodes[1].breadth == 1 assert chains[0].nodes[1].parent == chains[0].nodes[2] assert chains[0].nodes[2].depth == 1 assert chains[0].nodes[2].breadth == 1 assert chains[0].nodes[2].parent is None options.min_breadth = 1 options.create_variables = True state = State(kb.logic) chains = list(get_chains(state, options)) assert len(chains) == 5
def test_state(): state = State() P = Variable.parse("P") kitchen = Variable.parse("kitchen: r") study = Variable.parse("study: r") stove = Variable.parse("stove: o") at_kitchen = Proposition.parse("at(P, kitchen: r)") in_kitchen = Proposition.parse("in(stove: o, kitchen: r)") at_study = Proposition.parse("at(P, study: r)") assert not state.is_fact(at_kitchen) assert not state.is_fact(in_kitchen) assert not state.is_fact(at_study) assert len(state.variables) == 0 assert len(state.variables_of_type("P")) == 0 assert len(state.variables_of_type("r")) == 0 assert len(state.variables_of_type("o")) == 0 state.add_fact(at_kitchen) state.add_fact(in_kitchen) assert state.is_fact(at_kitchen) assert state.is_fact(in_kitchen) assert not state.is_fact(at_study) assert set(state.variables) == {P, kitchen, stove} assert state.variables_of_type("P") == {P} assert state.variables_of_type("r") == {kitchen} assert state.variables_of_type("o") == {stove} state.remove_fact(at_kitchen) assert not state.is_fact(at_kitchen) assert state.is_fact(in_kitchen) assert not state.is_fact(at_study) assert set(state.variables) == {kitchen, stove} assert len(state.variables_of_type("P")) == 0 assert state.variables_of_type("r") == {kitchen} assert state.variables_of_type("o") == {stove} state.remove_fact(in_kitchen) assert not state.is_fact(at_kitchen) assert not state.is_fact(in_kitchen) assert not state.is_fact(at_study) assert len(state.variables) == 0 assert len(state.variables_of_type("P")) == 0 assert len(state.variables_of_type("r")) == 0 assert len(state.variables_of_type("o")) == 0 state.add_fact(at_study) assert not state.is_fact(at_kitchen) assert not state.is_fact(in_kitchen) assert state.is_fact(at_study) assert set(state.variables) == {P, study} assert state.variables_of_type("P") == {P} assert state.variables_of_type("r") == {study} assert len(state.variables_of_type("o")) == 0
def main(): args = parse_args() P = Variable("P") # I = Variable("I") room = Variable("room", "r") kitchen = Variable("kitchen", "r") state = [ Proposition("at", [P, room]), Proposition("north_of", [kitchen, room]), Proposition("free", [kitchen, room]), Proposition("free", [room, kitchen]), Proposition("south_of", [room, kitchen]) ] # Sample quests. rng = np.random.RandomState(args.seed) chains = [] # rules_per_depth = {0: [data.get_rules()["take/c"], data.get_rules()["take/s"]], # 1: [data.get_rules()["open/c"]], # } rules_per_depth = { 0: [data.get_rules()["eat"]], 1: data.get_rules().get_matching("take/s.*"), 2: data.get_rules().get_matching("go.*"), 3: [data.get_rules()["open/d"]], 4: [data.get_rules()["unlock/d"]], 5: data.get_rules().get_matching("take/s.*", "take/c.*") } for i in range(args.nb_quests): chain = textworld.logic.sample_quest(state, rng, max_depth=args.quest_length, allow_partial_match=True, exceptions=[], rules_per_depth=rules_per_depth, backward=True) chains.append(chain[::-1]) print_chains(chains, verbose=args.verbose) actions_tree = build_tree_from_chains(chains) # Convert tree to networkx graph/tree filename = "sample_tree.svg" G, labels = actions_tree.to_networkx() if len(G) > 0: tree = nx.bfs_tree(G, actions_tree.no) save_graph_to_svg(tree, labels, filename, backward=True) else: try: os.remove(filename) except: pass
def __parseFacts(self, r): f = [] for p in r: temp = [] for v in p["vars"]: temp.append(self.__parseVariables(v)) for cbn in itertools.product(*temp): if "negate" in p.keys(): f.append((Proposition(p["name"], list(cbn)), not p["negate"])) else: f.append(Proposition(p["name"], list(cbn))) return f
def test_backward_chaining(): P = Variable("P", "P") room = Variable("room", "r") kitchen = Variable("kitchen", "r") state = State([ Proposition("at", [P, room]), Proposition("north_of", [kitchen, room]), Proposition("south_of", [room, kitchen]), ]) rules_per_depth = { 0: [data.get_rules()["take/c"], data.get_rules()["take/s"]], 1: [data.get_rules()["open/c"]] } tree_of_possible = chaining.get_chains(state, max_depth=2, allow_partial_match=True, exceptions=['d'], rules_per_depth=rules_per_depth, backward=True) chains = list(tree_of_possible.traverse_preorder(subquests=True)) assert len(chains) == 3 for chain in chains: for depth, action in enumerate(chain): assert action.action.name in [ rule.name for rule in rules_per_depth[depth] ] rules_per_depth = { 0: [data.get_rules()["put"]], 1: [data.get_rules()["go/north"]], 2: [data.get_rules()["take/c"]] } tree_of_possible = chaining.get_chains(state, max_depth=3, allow_partial_match=True, exceptions=['d'], rules_per_depth=rules_per_depth, backward=True) chains = list(tree_of_possible.traverse_preorder(subquests=True)) assert len(chains) == 3 for chain in chains: for depth, action in enumerate(chain): assert action.action.name in [ rule.name for rule in rules_per_depth[depth] ]
def test_get_visible_objects_in(): P = Variable("P") room = Variable("room", "r") chest = Variable("chest", "c") obj = Variable("obj", "o") # Closed chest. facts = [Proposition("at", [P, room]), Proposition("at", [chest, room]), Proposition("in", [obj, chest]), Proposition("closed", [chest])] world = World.from_facts(facts) objects = world.get_visible_objects_in(world.player_room) assert obj in world.objects assert obj not in objects # Open chest. facts = [Proposition("at", [P, room]), Proposition("at", [chest, room]), Proposition("in", [obj, chest]), Proposition("open", [chest])] world = World.from_facts(facts) objects = world.get_visible_objects_in(world.player_room) assert obj in world.objects assert obj in objects
def test_get_objects_in_inventory(): P = Variable("P") I = Variable("I") room = Variable("room", "r") obj = Variable("obj", "o") # Closed chest. facts = [Proposition("at", [P, room]), Proposition("in", [obj, I])] world = World.from_facts(facts) objects = world.get_objects_in_inventory() assert obj in world.objects assert obj in objects
def test_populate_with(): # setup P = Variable('P') I = Variable('I') room = Variable('room', 'r') facts = [Proposition('at', [P, room])] world = World.from_facts(facts) # test obj = Variable('obj', 'o') world.populate_with(objects=[obj]) assert obj in world.objects assert (Proposition('at', [obj, room]) in world.facts or Proposition('in', [obj, I]) in world.facts)
def check_state(state): fail = Proposition("fail", []) debug = Proposition("debug", []) constraints = state.all_applicable_actions(data.get_constraints().values()) for constraint in constraints: if state.is_applicable(constraint): # Optimistically delay copying the state copy = state.copy() copy.apply(constraint) if copy.is_fact(fail): return False return True
def test_going_through_door(): P = Variable("P", "P") room = Variable("room", "r") kitchen = Variable("kitchen", "r") state = State() state.add_facts([ Proposition("at", [P, room]), Proposition("north_of", [kitchen, room]), Proposition("free", [kitchen, room]), Proposition("free", [room, kitchen]), Proposition("south_of", [room, kitchen]) ]) # Sample quests. chains = [] rules_per_depth = { 0: [data.get_rules()["take/c"], data.get_rules()["take/s"]], 1: data.get_rules().get_matching("go.*"), 2: [data.get_rules()["open/d"]] } tree_of_possible = chaining.get_chains(state, max_depth=3, allow_partial_match=True, exceptions=[], rules_per_depth=rules_per_depth, backward=True) chains = list(tree_of_possible.traverse_preorder(subquests=True)) # chaining.print_chains(chains) # 1. take/c(P, room, c_0, o_0, I) # 2. take/c(P, room, c_0, o_0, I) -> go/north(P, r_0, room) # 3. take/c(P, room, c_0, o_0, I) -> go/north(P, r_0, room) -> open/d(P, r_0, d_0, room) # 4. take/c(P, room, c_0, o_0, I) -> go/south(P, kitchen, room) # 5. take/c(P, room, c_0, o_0, I) -> go/south(P, kitchen, room) -> open/d(P, kitchen, d_0, room) # 6. take/c(P, room, c_0, o_0, I) -> go/east(P, r_0, room) # 7. take/c(P, room, c_0, o_0, I) -> go/east(P, r_0, room) -> open/d(P, r_0, d_0, room) # 8. take/c(P, room, c_0, o_0, I) -> go/west(P, r_0, room) # 9. take/c(P, room, c_0, o_0, I) -> go/west(P, r_0, room) -> open/d(P, r_0, d_0, room) # 10. take/s(P, room, s_0, o_0, I) # 11. take/s(P, room, s_0, o_0, I) -> go/north(P, r_0, room) # 12. take/s(P, room, s_0, o_0, I) -> go/north(P, r_0, room) -> open/d(P, r_0, d_0, room) # 13. take/s(P, room, s_0, o_0, I) -> go/south(P, kitchen, room) # 14. take/s(P, room, s_0, o_0, I) -> go/south(P, kitchen, room) -> open/d(P, kitchen, d_0, room) # 15. take/s(P, room, s_0, o_0, I) -> go/east(P, r_0, room) # 16. take/s(P, room, s_0, o_0, I) -> go/east(P, r_0, room) -> open/d(P, r_0, d_0, room) # 17. take/s(P, room, s_0, o_0, I) -> go/west(P, r_0, room) # 18. take/s(P, room, s_0, o_0, I) -> go/west(P, r_0, room) -> open/d(P, r_0, d_0, room) assert len(chains) == 18
def set_winning_conditions( self, winning_conditions: Optional[Collection[Proposition]]) -> Action: """ Sets wining conditions for this quest. Args: winning_conditions: Set of propositions that need to be true before marking the quest as completed. Default: postconditions of the last action. Returns: An action that is only applicable when the quest is finished. """ if winning_conditions is None: if len(self.actions) == 0: raise UnderspecifiedQuestError() # The default winning conditions are the postconditions of the # last action in the quest. winning_conditions = self.actions[-1].postconditions # TODO: Make win propositions distinguishable by adding arguments? win_fact = Proposition("win") self.win_action = Action("win", preconditions=winning_conditions, postconditions=list(winning_conditions) + [win_fact]) return self.win_action
def _convert_to_needs_relation(proposition): if not proposition.name.startswith("needs_"): return proposition return Proposition("needs", [proposition.arguments[0], Variable(proposition.name.split("needs_")[-1], "STATE")])
def setUpClass(cls): M = GameMaker() # The goal commands = ["go east", "insert carrot into chest"] # Create a 'bedroom' room. R1 = M.new_room("bedroom") R2 = M.new_room("kitchen") M.set_player(R1) path = M.connect(R1.east, R2.west) path.door = M.new(type='d', name='wooden door') path.door.add_property("open") carrot = M.new(type='f', name='carrot') M.inventory.add(carrot) # Add a closed chest in R2. chest = M.new(type='c', name='chest') chest.add_property("open") R2.add(chest) cls.failing_conditions = (Proposition("eaten", [carrot.var]),) cls.quest = M.set_quest_from_commands(commands) cls.quest.set_failing_conditions(cls.failing_conditions) cls.game = M.build()
def set_conditions(self, conditions: Iterable[Proposition]) -> Action: """ Set the triggering conditions for this event. Args: conditions: Set of propositions which need to be all true in order for this event to get triggered. Returns: Action that can only be applied when all conditions are statisfied. """ if not conditions: if len(self.actions) == 0: raise UnderspecifiedEventError() # The default winning conditions are the postconditions of the # last action in the quest. conditions = self.actions[-1].postconditions variables = sorted(set([v for c in conditions for v in c.arguments])) event = Proposition("event", arguments=variables) self.condition = Action("trigger", preconditions=conditions, postconditions=list(conditions) + [event]) return self.condition
def inventory_proposition(observation, objectVars, inventoryVar): updated_props = set() inventory = observation['inventory'] for item in inventory: key = item['type'] updated_props.add( Proposition("in", [Variable.parse(key), inventoryVar])) return updated_props
def test_logic_parsing(): P = Variable("P", "P") kitchen = Variable("kitchen", "r") egg = Variable("egg", "f") assert Variable.parse("P") == P assert Variable.parse("kitchen: r") == kitchen at_kitchen = Proposition("at", [P, kitchen]) in_kitchen = Proposition("in", [egg, kitchen]) raw_egg = Proposition("raw", [egg]) cooked_egg = Proposition("cooked", [egg]) assert Proposition.parse("at(P, kitchen: r)") == at_kitchen assert Signature.parse("at(P, r)") == at_kitchen.signature cook_egg = Action("cook", [at_kitchen, in_kitchen, raw_egg], [at_kitchen, in_kitchen, cooked_egg]) assert Action.parse( "cook :: $at(P, kitchen: r) & $in(egg: f, kitchen: r) & raw(egg: f) -> cooked(egg: f)" ) == cook_egg P = Placeholder("P", "P") r = Placeholder("r", "r") d = Placeholder("d", "d") rp = Placeholder("r'", "r") assert Placeholder.parse("P") == P assert Placeholder.parse("r") == r assert Placeholder.parse("d") == d assert Placeholder.parse("r'") == rp at_r = Predicate("at", [P, r]) link = Predicate("link", [r, d, rp]) unlocked = Predicate("unlocked", [d]) at_rp = Predicate("at", [P, rp]) assert Predicate.parse("link(r, d, r')") == link go = Rule("go", [at_r, link, unlocked], [link, unlocked, at_rp]) assert Rule.parse( "go :: at(P, r) & $link(r, d, r') & $unlocked(d) -> at(P, r')") == go # Make sure the types match in the whole expression assert_raises(ValueError, Rule.parse, "take :: $at(P, r) & $in(c, r) & in(o: k, c) -> in(o, I)")
def test_used_names_is_updated(verbose=False): # Make generation throughout the framework reproducible. g_rng.set_seed(1234) # Generate a map that's shape in a cross with room0 in the middle. P = Variable('P') r = Variable('r_0', 'r') k1 = Variable('k_1', 'k') k2 = Variable('k_2', 'k') c1 = Variable('c_1', 'c') c2 = Variable('c_2', 'c') facts = [ Proposition('at', [P, r]), Proposition('at', [k1, r]), Proposition('at', [k2, r]), Proposition('at', [c1, r]), Proposition('at', [c2, r]), Proposition('match', [k1, c1]), Proposition('match', [k2, c2]) ] world = World.from_facts(facts) world.set_player_room() # Set start room to the middle one. world.populate_room(10, world.player_room) # Add objects to the starting room. # Generate the world representation. grammar = textworld.generator.make_grammar({}, rng=np.random.RandomState(42)) game = textworld.generator.make_game_with(world, [], grammar) for entity_infos in game.infos.values(): if entity_infos.name is None: continue assert entity_infos.name in grammar.used_names
def new_fact(self, name: str, *entities: List["WorldEntity"]) -> None: """ Create new fact. Args: name: The name of the new fact. *entities: A list of entities as arguments to the new fact. """ args = [entity.var for entity in entities] return Proposition(name, args)
def test_cannot_automatically_positioning_rooms(): P = Variable("P") r0 = Variable("Room0", "r") r1 = Variable("Room1", "r") r2 = Variable("Room2", "r") r3 = Variable("Room3", "r") r4 = Variable("Room4", "r") r5 = Variable("Room5", "r") d = Variable("door", "d") facts = [Proposition("at", [P, r0])] facts.extend(connect(r0, 'north', r1)) facts.extend(connect(r0, 'east', r2)) facts.extend(connect(r0, 'south', r3)) facts.extend(connect(r0, 'west', r4)) world = World.from_facts(facts) npt.assert_raises(NoFreeExitError, world.add_fact, Proposition("link", [r0, d, r5]))
def test_automatically_positioning_rooms(): P = Variable("P") r1 = Variable("Room1", "r") r2 = Variable("Room2", "r") d = Variable("door", "d") facts = [Proposition("at", [P, r1])] world = World.from_facts(facts) assert len(world.rooms) == 1 assert len(world.find_room_by_id(r1.name).exits) == 0 world.add_fact(Proposition("link", [r1, d, r2])) assert len(world.rooms) == 2 r1_entity = world.find_room_by_id(r1.name) r2_entity = world.find_room_by_id(r2.name) assert len(r1_entity.exits) == 1 assert len(r2_entity.exits) == 1 assert list(r1_entity.exits.keys())[0] == reverse_direction(list(r2_entity.exits.keys())[0])
def get_human_readable_fact(self, fact: Proposition) -> Proposition: def _get_name(info): return info.name if info.name else info.id arguments = [ Variable(_get_name(self.entity_infos[var.name]), var.type) for var in fact.arguments ] return Proposition(fact.name, arguments)
def reconstitute_facts(facts_list): if not isinstance(facts_list[0], Proposition): # maybe serialized list of facts # world_facts0 = world_facts.copy() facts_list = [ Proposition.deserialize(fact_json) for fact_json in facts_list ] # print("Deserialized:\n", facts_list, "\n===>\n", facts_list) return facts_list
def add_fact(self, name: str, *entities: List["WorldEntity"]) -> None: """ Adds a fact to this entity. Args: name: The name of the new fact. *entities: A list of entities as arguments to the new fact. """ args = [entity.var for entity in entities] self._facts.append(Proposition(name, args))
def test_backward_chaining(): P = Variable("P", "P") room = Variable("room", "r") kitchen = Variable("kitchen", "r") state = State(KnowledgeBase.default().logic, [ Proposition("at", [P, room]), Proposition("north_of", [kitchen, room]), Proposition("south_of", [room, kitchen]), ]) options = ChainingOptions() options.backward = True options.max_depth = 2 options.max_length = 2 options.subquests = True options.create_variables = True options.rules_per_depth = [ [ KnowledgeBase.default().rules["take/c"], KnowledgeBase.default().rules["take/s"] ], [KnowledgeBase.default().rules["open/c"]], ] options.restricted_types = {"d"} chains = list(get_chains(state, options)) assert len(chains) == 3 options = ChainingOptions() options.backward = True options.max_depth = 3 options.max_length = 3 options.subquests = True options.create_variables = True options.rules_per_depth = [ [KnowledgeBase.default().rules["put"]], [KnowledgeBase.default().rules["go/north"]], [KnowledgeBase.default().rules["take/c"]], ] options.restricted_types = {"d"} chains = list(get_chains(state, options)) assert len(chains) == 3
def _atom2proposition(atom): if isinstance(atom, fast_downward.translate.pddl.conditions.Atom): if atom.predicate == "=": return None return Proposition( atom.predicate, [Variable(arg, name2type[arg]) for arg in atom.args]) elif isinstance(atom, fast_downward.translate.pddl.f_expression.Assign): if atom.fluent.symbol == "total-cost": return None #name = "{}_{}".format(atom.fluent.symbol, atom.expression.value) name = "{}".format(atom.expression.value) return Proposition( name, [Variable(arg, name2type[arg]) for arg in atom.fluent.args])
def format_facts(facts_list, prev_action=None, obs_descr=None, kg=None): if not isinstance(facts_list[0], Proposition): # maybe serialized list of facts # world_facts0 = world_facts.copy() facts_list = [Proposition.deserialize(fact_json) for fact_json in facts_list] if kg is None: kg = KnowledgeGraph(None, debug=False) # suppress excessive print() outs kg.update_facts(facts_list, prev_action=prev_action) #return str(kg) return kg.describe_room(kg.player_location.name, obs_descr=obs_descr)