Esempio n. 1
0
    def compute_mask(self, inputs, mask=None):
        if self.conditional:
            masks = mask if mask is not None else []
            masks = [K.expand_dims(m, 0) for m in masks if m is not None]
            if len(masks) == 0:
                return None
            else:
                return K.all(K.concatenate(masks, axis=0), axis=0)

        return mask
Esempio n. 2
0
 def sparse_accuracy(self, y_true, y_pred):
     """训练过程中显示逐帧准确率的函数,排除了mask的影响
     此处y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     mask = K.all(K.greater(y_pred, -1e6), axis=2)
     mask = K.cast(mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 逐标签取最大来粗略评测训练效果
     y_pred = K.cast(K.argmax(y_pred, 2), 'int32')
     isequal = K.cast(K.equal(y_true, y_pred), K.floatx())
     return K.sum(isequal * mask) / K.sum(mask)
Esempio n. 3
0
 def dense_loss(self, y_true, y_pred):
     """y_true需要是one hot形式
     """
     # 导出mask并转换数据类型
     mask = K.all(K.greater(y_pred, -1e6), axis=2, keepdims=True)
     mask = K.cast(mask, K.floatx())
     # 计算目标分数
     y_true, y_pred = y_true * mask, y_pred * mask
     target_score = self.path_score(y_pred, y_true)
     # 递归计算log Z
     init_states = [y_pred[:, 0]]
     y_pred = K.concatenate([y_pred, mask], axis=2)
     input_length = K.int_shape(y_pred[:, 1:])[1]
     log_norm, _, _ = K.rnn(self.log_norm_step,
                            y_pred[:, 1:],
                            init_states,
                            input_length=input_length)  # 最后一步的log Z向量
     log_norm = K.logsumexp(log_norm, 1)  # logsumexp得标量
     # 计算损失 -log p
     return log_norm - target_score