Esempio n. 1
0
    def call(self, inputs):
        #     PE_2i(p) = sin(p/10000^(2i/d_pos))
        #     PE_2i+1(p) = cos(p/10000^(2i/d_pos))
        batch_size, seq_len, word_emb_dim = K.shape(inputs)[0], K.shape(
            inputs)[1], K.shape(inputs)[2]
        if not self.embedding_dim or self.method == 'add':
            self.embedding_dim = word_emb_dim
        t = 2 * K.arange(self.embedding_dim / 2, dtype='float32') / K.cast(
            self.embedding_dim, dtype='float32')
        embedding_wise_pos = 1. / K.pow(
            10000., t)  # 1/10000 ^(2i/d_pos) , shape = (p_dim/2, )
        embedding_wise_pos = K.expand_dims(embedding_wise_pos,
                                           0)  # (1, p_dim/2)
        word_wise_pos = K.cumsum(K.ones_like(inputs[:, :, 0]),
                                 axis=1)  # shape = [batch_size, seq_len]
        word_wise_pos = K.expand_dims(word_wise_pos,
                                      2)  # (batch_size, seq_len, 1)
        position_embedding = K.dot(
            word_wise_pos,
            embedding_wise_pos)  # (batch_size, seq_len, p_dim/2)

        position_embedding = K.expand_dims(position_embedding, 3)
        position_embedding = K.reshape(K.concatenate(
            [K.sin(position_embedding),
             K.cos(position_embedding)], axis=-1),
                                       shape=(batch_size, seq_len, -1))

        if self.method == 'add':
            return inputs + position_embedding

        return K.concatenate([inputs, position_embedding], axis=-1)
Esempio n. 2
0
 def compute_loss_of_similarity(self, inputs):
     y_true = self.get_labels_of_similarity(inputs)  # 构建标签
     y_pred = K.l2_normalize(inputs, axis=1)  # 句向量归一化
     similarities = K.dot(y_pred, K.transpose(y_pred))  # 相似度矩阵
     similarities = similarities - K.eye(K.shape(y_pred)[0]) * 1e12  # 排除对角线
     similarities = similarities * self.scale  # scale
     loss = K.categorical_crossentropy(
         y_true, similarities, from_logits=True
     )
     return loss
 def compute_loss_of_similarity(self, inputs, mask=None):
     # _, _, _, y_pred, _ = inputs
     _, _, _, _, y_pred = inputs  # use last layer's logits
     y_true = self.get_labels_of_similarity(y_pred)  # 构建标签
     y_pred = K.l2_normalize(y_pred, axis=1)  # 句向量归一化
     similarities = K.dot(y_pred, K.transpose(y_pred))  # 相似度矩阵
     similarities = similarities - K.eye(K.shape(y_pred)[0]) * 1e12  # 排除对角线
     similarities = similarities * 20  # scale
     loss = K.categorical_crossentropy(
         y_true, similarities, from_logits=True
     )
     self.add_metric(loss, 'sim_loss')
     return loss
Esempio n. 4
0
    def call(self, inputs, mode='embedding'):
        """
        embedding mode: 普通embedding, dense mode: 无bias的Dense,x dot embedding.T
        :param inputs:
        :param mode:
        :return:
        """
        self._mode = mode
        if mode == 'embedding':
            return super(Embedding, self).call(inputs)

        kernel = K.transpose(self.embeddings)
        return K.dot(inputs, kernel)
Esempio n. 5
0
    def compute_loss_of_scl(self, inputs, mask=None):
        y_pred, y_true = inputs
        label_mask = self.get_label_mask(y_true)
        y_pred = K.l2_normalize(y_pred, axis=1)  # 特征向量归一化
        similarities = K.dot(y_pred, K.transpose(y_pred))  # 相似矩阵
        similarities = similarities - K.eye(K.shape(y_pred)[0]) * 1e12  # 排除对角线,即 i == j

        similarities = similarities / self.T  # Temperature scale
        similarities = K.exp(similarities)  # exp

        sum_similarities = K.sum(similarities, axis=-1, keepdims=True)  # sum i != k
        scl = similarities / sum_similarities
        scl = K.log(scl + K.epsilon())  # sum log
        scl = -K.sum(scl * label_mask, axis=1, keepdims=True) / (K.sum(label_mask, axis=1, keepdims=True) + K.epsilon())
        return K.mean(scl)