import torch.nn as nn from nn import ResNet18 from tools import AverageMeter from progressbar import ProgressBar from tools import seed_everything from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.optim as optim from trainingmonitor import TrainingMonitor from optimizer import Lookahead epochs = 30 batch_size = 128 seed = 42 seed_everything(seed) model = ResNet18() loss_fn = nn.CrossEntropyLoss() device = torch.device("cuda:0") model.to(device) parser = argparse.ArgumentParser(description='CIFAR10') parser.add_argument("--model", type=str, default='ResNet18') parser.add_argument("--task", type=str, default='image') parser.add_argument("--optimizer", default='lookahead', type=str, choices=['lookahead', 'adam']) args = parser.parse_args() if args.optimizer == 'lookahead':
def train(args, train_dataloader, eval_dataloader, metrics, model): """ Train the model """ t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] args.warmup_steps = t_total * args.warmup_proportion optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 best_acc = 0 model.zero_grad() seed_everything(args.seed) for epoch in range(int(args.num_train_epochs)): tr_loss = AverageMeter() pbar = ProgressBar(n_total=len(train_dataloader), desc='Training') for step, batch in enumerate(train_dataloader): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} inputs['token_type_ids'] = batch[2] outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss.update(loss.item(), n=1) pbar(step, info={"loss": loss.item()}) if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 train_log = {'loss': tr_loss.avg} eval_log = evaluate(args, model, eval_dataloader, metrics) logs = dict(train_log, **eval_log) show_info = f'\nEpoch: {epoch} - ' + "-".join([f' {key}: {value:.4f} ' for key, value in logs.items()]) logger.info(show_info) if logs['eval_acc'] > best_acc: logger.info(f"\nEpoch {epoch}: eval_acc improved from {best_acc} to {logs['eval_acc']}") logger.info("save model to disk.") best_acc = logs['eval_acc'] print("Valid Entity Score: ") model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_file = args.model_save_path output_file.mkdir(exist_ok=True) output_model_file = output_file / WEIGHTS_NAME torch.save(model_to_save.state_dict(), output_model_file) output_config_file = output_file / CONFIG_NAME with open(str(output_config_file), 'w') as f: f.write(model_to_save.config.to_json_string())
def main(): parser = argparse.ArgumentParser() parser.add_argument("--arch", default='albert', type=str) parser.add_argument('--task_name', default='lcqmc', type=str) parser.add_argument("--train_max_seq_len", default=60, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--eval_max_seq_len", default=60, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action='store_true', help="Whether to run eval on the test set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--eval_batch_size", default=16, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.1, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=int, help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() args.model_save_path = config['checkpoint_dir'] / f'{args.arch}' args.model_save_path.mkdir(exist_ok=True) # Setudistant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device init_logger(log_file=config['log_dir'] / 'finetuning.log') logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed seed_everything(args.seed) # --------- data processor = BertProcessor(vocab_path=config['bert_dir'] / 'vocab.txt', do_lower_case=args.do_lower_case) label_list = processor.get_labels() num_labels = len(label_list) if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab bert_config = BertConfig.from_json_file(str(config['bert_dir'] / 'bert_config.json')) bert_config.share_parameter_across_layers = True bert_config.num_labels = num_labels logger.info("Training/evaluation parameters %s", args) metrics = Accuracy(topK=1) # Training if args.do_train: train_data = processor.get_train(config['data_dir'] / "train.txt") train_examples = processor.create_examples(lines=train_data, example_type='train', cached_examples_file=config[ 'data_dir'] / f"cached_train_examples_{args.arch}") train_features = processor.create_features(examples=train_examples, max_seq_len=args.train_max_seq_len, cached_features_file=config[ 'data_dir'] / "cached_train_features_{}_{}".format( args.train_max_seq_len, args.arch )) train_dataset = processor.create_dataset(train_features) train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) valid_data = processor.get_dev(config['data_dir'] / "dev.txt") valid_examples = processor.create_examples(lines=valid_data, example_type='valid', cached_examples_file=config[ 'data_dir'] / f"cached_valid_examples_{args.arch}") valid_features = processor.create_features(examples=valid_examples, max_seq_len=args.eval_max_seq_len, cached_features_file=config[ 'data_dir'] / "cached_valid_features_{}_{}".format( args.eval_max_seq_len, args.arch )) valid_dataset = processor.create_dataset(valid_features) valid_sampler = SequentialSampler(valid_dataset) valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size) model = BertForSequenceClassification.from_pretrained(config['bert_dir'], config=bert_config) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) train(args, train_dataloader, valid_dataloader, metrics, model) if args.do_test: test_data = processor.get_train(config['data_dir'] / "test.txt") test_examples = processor.create_examples(lines=test_data, example_type='test', cached_examples_file=config[ 'data_dir'] / f"cached_test_examples_{args.arch}") test_features = processor.create_features(examples=test_examples, max_seq_len=args.eval_max_seq_len, cached_features_file=config[ 'data_dir'] / "cached_test_features_{}_{}".format( args.eval_max_seq_len, args.arch )) test_dataset = processor.create_dataset(test_features) test_sampler = SequentialSampler(test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.eval_batch_size) model = BertForSequenceClassification.from_pretrained(args.model_save_path, config=bert_config) model.to(args.device) test_log = evaluate(args, model, test_dataloader, metrics) print(test_log)
def main(): parser = ArgumentParser() parser.add_argument('--data_name', default='albert', type=str) parser.add_argument("--do_data", default=False, action='store_true') parser.add_argument("--do_split", default=False, action='store_true') parser.add_argument("--do_lower_case", default=False, action='store_true') parser.add_argument('--seed', default=42, type=int) parser.add_argument("--line_per_file", default=1000000000, type=int) parser.add_argument( "--file_num", type=int, default=10, help="Number of dynamic masking to pregenerate (with different masks)") parser.add_argument("--max_seq_len", type=int, default=128) parser.add_argument( "--short_seq_prob", type=float, default=0.1, help="Probability of making a short sentence as a training example") parser.add_argument( "--masked_lm_prob", type=float, default=0.15, help="Probability of masking each token for the LM task") parser.add_argument( "--max_predictions_per_seq", type=int, default=20, help="Maximum number of tokens to mask in each sequence") args = parser.parse_args() seed_everything(args.seed) tokenizer = BertTokenizer(vocab_file=config['checkpoint_dir'] / 'vocab.txt', do_lower_case=args.do_lower_case) if args.do_split: corpus_path = config['data_dir'] / "corpus/corpus.txt" split_save_path = config['data_dir'] / "corpus/train" if not split_save_path.exists(): split_save_path.mkdir(exist_ok=True) line_per_file = args.line_per_file command = f'split -a 4 -l {line_per_file} -d {corpus_path} {split_save_path}/shard_' os.system(f"{command}") if args.do_data: data_path = config['data_dir'] / "corpus/train" files = sorted([ f for f in config['data_dir'].iterdir() if f.exists() and '.txt' in str(f) ]) logger.info("--- pregenerate training data parameters ---") logger.info(f'max_seq_len: {args.max_seq_len}') logger.info(f"max_predictions_per_seq: {args.max_predictions_per_seq}") logger.info(f"masked_lm_prob: {args.masked_lm_prob}") logger.info(f"seed: {args.seed}") logger.info(f"mask file num : {args.file_num}") logger.info(f"train file num : {len(files)}") for idx in range(args.file_num): logger.info(f"pregenetate file_{idx}.json") save_filename = data_path / f"{args.data_name}_file_{idx}.json" num_instances = 0 with save_filename.open('w') as fw: for file_idx in range(len(files)): file_path = files[file_idx] file_examples = create_training_instances( input_file=file_path, tokenizer=tokenizer, max_seq_len=args.max_seq_len, short_seq_prob=args.short_seq_prob, masked_lm_prob=args.masked_lm_prob, max_predictions_per_seq=args.max_predictions_per_seq) file_examples = [ json.dumps(instance) for instance in file_examples ] for instance in file_examples: fw.write(instance + '\n') num_instances += 1 metrics_file = data_path / f"{args.data_name}_file_{idx}_metrics.json" print(f"num_instances: {num_instances}") with metrics_file.open('w') as metrics_file: metrics = { "num_training_examples": num_instances, "max_seq_len": args.max_seq_len } metrics_file.write(json.dumps(metrics))
def main(): parser = ArgumentParser() parser.add_argument('--data_name', default='albert', type=str) parser.add_argument("--file_num", type=int, default=2, help="Number of pregenerate file") parser.add_argument( "--reduce_memory", action="store_true", help= "Store training data as on-disc memmaps to massively reduce memory usage" ) parser.add_argument("--epochs", type=int, default=4, help="Number of epochs to train for") parser.add_argument('--num_eval_steps', default=20) parser.add_argument('--num_save_steps', default=200) parser.add_argument('--share_parameter', default=False, action='store_true') parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument("--train_batch_size", default=8, type=int, help="Total batch size for training.") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Linear warmup over warmup_steps.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument('--max_grad_norm', default=1.0, type=float) parser.add_argument("--learning_rate", default=2e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--fp16_opt_level', type=str, default='O2', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") args = parser.parse_args() pregenerated_data = config['data_dir'] / "corpus/train" assert pregenerated_data.is_dir(), \ "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!" samples_per_epoch = 0 for i in range(args.file_num): data_file = pregenerated_data / f"{args.data_name}_file_{i}.json" metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json" if data_file.is_file() and metrics_file.is_file(): metrics = json.loads(metrics_file.read_text()) samples_per_epoch += metrics['num_training_examples'] else: if i == 0: exit("No training data was found!") print( f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})." ) print( "This script will loop over the available data, but training diversity may be negatively impacted." ) break logger.info(f"samples_per_epoch: {samples_per_epoch}") if args.local_rank == -1 or args.no_cuda: device = torch.device(f"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) args.n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}, share_parameter: {args.share_parameter}" ) if args.gradient_accumulation_steps < 1: raise ValueError( f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1" ) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps seed_everything(args.seed) tokenizer = BertTokenizer(vocab_file=config['checkpoint_dir'] / 'vocab.txt') total_train_examples = samples_per_epoch * args.epochs num_train_optimization_steps = int(total_train_examples / args.train_batch_size / args.gradient_accumulation_steps) if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size( ) args.warmup_steps = int(num_train_optimization_steps * args.warmup_proportion) bert_config = BertConfig.from_json_file( str(config['checkpoint_dir'] / 'config.json')) if args.share_parameter: bert_config.share_parameter_across_layers = True else: bert_config.share_parameter_across_layers = False model = BertForPreTraining(config=bert_config) # model = BertForMaskedLM.from_pretrained(config['checkpoint_dir'] / 'checkpoint-580000') model.to(device) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) lr_scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if args.n_gpu > 1: model = torch.nn.DataParallel(model) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank) global_step = 0 mask_metric = LMAccuracy() sop_metric = LMAccuracy() tr_mask_acc = AverageMeter() tr_sop_acc = AverageMeter() tr_loss = AverageMeter() tr_mask_loss = AverageMeter() tr_sop_loss = AverageMeter() loss_fct = CrossEntropyLoss(ignore_index=-1) train_logs = {} logger.info("***** Running training *****") logger.info(f" Num examples = {total_train_examples}") logger.info(f" Batch size = {args.train_batch_size}") logger.info(f" Num steps = {num_train_optimization_steps}") logger.info(f" warmup_steps = {args.warmup_steps}") start_time = time.time() seed_everything(args.seed) # Added here for reproducibility for epoch in range(args.epochs): for idx in range(args.file_num): epoch_dataset = PregeneratedDataset( file_id=idx, training_path=pregenerated_data, tokenizer=tokenizer, reduce_memory=args.reduce_memory, data_name=args.data_name) if args.local_rank == -1: train_sampler = RandomSampler(epoch_dataset) else: train_sampler = DistributedSampler(epoch_dataset) train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size) model.train() nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(train_dataloader): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch outputs = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) prediction_scores = outputs[0] seq_relationship_score = outputs[1] masked_lm_loss = loss_fct( prediction_scores.view(-1, bert_config.vocab_size), lm_label_ids.view(-1)) next_sentence_loss = loss_fct( seq_relationship_score.view(-1, 2), is_next.view(-1)) loss = masked_lm_loss + next_sentence_loss mask_metric(logits=prediction_scores.view( -1, bert_config.vocab_size), target=lm_label_ids.view(-1)) sop_metric(logits=seq_relationship_score.view(-1, 2), target=is_next.view(-1)) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() nb_tr_steps += 1 tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0)) tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0)) tr_loss.update(loss.item(), n=1) tr_mask_loss.update(masked_lm_loss.item(), n=1) tr_sop_loss.update(next_sentence_loss.item(), n=1) if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) lr_scheduler.step() optimizer.step() optimizer.zero_grad() global_step += 1 if global_step % args.num_eval_steps == 0: now = time.time() eta = now - start_time if eta > 3600: eta_format = ('%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)) elif eta > 60: eta_format = '%d:%02d' % (eta // 60, eta % 60) else: eta_format = '%ds' % eta train_logs['loss'] = tr_loss.avg train_logs['mask_acc'] = tr_mask_acc.avg train_logs['sop_acc'] = tr_sop_acc.avg train_logs['mask_loss'] = tr_mask_loss.avg train_logs['sop_loss'] = tr_sop_loss.avg show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \ f'- ETA: {eta_format}' + "-".join( [f' {key}: {value:.4f} ' for key, value in train_logs.items()]) logger.info(show_info) tr_mask_acc.reset() tr_sop_acc.reset() tr_loss.reset() tr_mask_loss.reset() tr_sop_loss.reset() start_time = now if global_step % args.num_save_steps == 0: if args.local_rank in [-1, 0] and args.num_save_steps > 0: # Save model checkpoint output_dir = config[ 'checkpoint_dir'] / f'lm-checkpoint-{global_step}' if not output_dir.exists(): output_dir.mkdir() # save model model_to_save = model.module if hasattr( model, 'module' ) else model # Take care of distributed/parallel training model_to_save.save_pretrained(str(output_dir)) torch.save(args, str(output_dir / 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) # save config output_config_file = output_dir / CONFIG_NAME with open(str(output_config_file), 'w') as f: f.write(model_to_save.config.to_json_string()) # save vocab tokenizer.save_vocabulary(output_dir)
np.save(f'./feature/{arch}_feature.npy', output_array, allow_pickle=False) np.save(f'./feature/{arch}_target.npy', target_array, allow_pickle=False) if __name__ == "__main__": parser = argparse.ArgumentParser(description='CIFAR10') parser.add_argument("--model", type=str, default='ResNet18') parser.add_argument('--seed', type=int, default=42) parser.add_argument('--epoch', type=int, default=30) parser.add_argument('--batch_size', type=int, default=128) parser.add_argument("--task", type=str, default='image') parser.add_argument("--do_lsr", action='store_true', help="Whether to do label smoothing.") args = parser.parse_args() seed_everything(args.seed) if args.do_lsr: arch = args.model + '_label_smoothing' else: arch = args.model model_path = f"./checkpoints/{arch}.bin" extract_feature = ExtractFeature(model_path) device = torch.device("cuda:0") extract_feature.to(device) data = { 'valid': datasets.CIFAR10(root='./data', train=False,