Пример #1
0
import torch.nn as nn
from nn import ResNet18
from tools import AverageMeter
from progressbar import ProgressBar
from tools import seed_everything
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.optim as optim
from trainingmonitor import TrainingMonitor
from optimizer import Lookahead

epochs = 30
batch_size = 128
seed = 42

seed_everything(seed)
model = ResNet18()
loss_fn = nn.CrossEntropyLoss()
device = torch.device("cuda:0")
model.to(device)

parser = argparse.ArgumentParser(description='CIFAR10')
parser.add_argument("--model", type=str, default='ResNet18')
parser.add_argument("--task", type=str, default='image')
parser.add_argument("--optimizer",
                    default='lookahead',
                    type=str,
                    choices=['lookahead', 'adam'])
args = parser.parse_args()

if args.optimizer == 'lookahead':
Пример #2
0
def train(args, train_dataloader, eval_dataloader, metrics, model):
    """ Train the model """

    t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
         'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    args.warmup_steps = t_total * args.warmup_proportion
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    best_acc = 0
    model.zero_grad()
    seed_everything(args.seed)
    for epoch in range(int(args.num_train_epochs)):
        tr_loss = AverageMeter()
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {'input_ids': batch[0],
                      'attention_mask': batch[1],
                      'labels': batch[3]}
            inputs['token_type_ids'] = batch[2]
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
            tr_loss.update(loss.item(), n=1)
            pbar(step, info={"loss": loss.item()})
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

        train_log = {'loss': tr_loss.avg}
        eval_log = evaluate(args, model, eval_dataloader, metrics)
        logs = dict(train_log, **eval_log)
        show_info = f'\nEpoch: {epoch} - ' + "-".join([f' {key}: {value:.4f} ' for key, value in logs.items()])
        logger.info(show_info)

        if logs['eval_acc'] > best_acc:
            logger.info(f"\nEpoch {epoch}: eval_acc improved from {best_acc} to {logs['eval_acc']}")
            logger.info("save model to disk.")
            best_acc = logs['eval_acc']
            print("Valid Entity Score: ")
            model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
            output_file = args.model_save_path
            output_file.mkdir(exist_ok=True)
            output_model_file = output_file / WEIGHTS_NAME
            torch.save(model_to_save.state_dict(), output_model_file)
            output_config_file = output_file / CONFIG_NAME
            with open(str(output_config_file), 'w') as f:
                f.write(model_to_save.config.to_json_string())
Пример #3
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("--arch", default='albert', type=str)
    parser.add_argument('--task_name', default='lcqmc', type=str)
    parser.add_argument("--train_max_seq_len", default=60, type=int,
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--eval_max_seq_len", default=60, type=int,
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test", action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--train_batch_size", default=32, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--eval_batch_size", default=16, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=2e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.1, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=int,
                        help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.")

    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
    args = parser.parse_args()

    args.model_save_path = config['checkpoint_dir'] / f'{args.arch}'
    args.model_save_path.mkdir(exist_ok=True)

    # Setudistant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1

    args.device = device
    init_logger(log_file=config['log_dir'] / 'finetuning.log')
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    seed_everything(args.seed)
    # --------- data
    processor = BertProcessor(vocab_path=config['bert_dir'] / 'vocab.txt', do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    num_labels = len(label_list)


    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    bert_config = BertConfig.from_json_file(str(config['bert_dir'] / 'bert_config.json'))

    bert_config.share_parameter_across_layers = True
    bert_config.num_labels = num_labels

    logger.info("Training/evaluation parameters %s", args)
    metrics = Accuracy(topK=1)
    # Training
    if args.do_train:
        train_data = processor.get_train(config['data_dir'] / "train.txt")
        train_examples = processor.create_examples(lines=train_data, example_type='train',
                                                   cached_examples_file=config[
                                                                            'data_dir'] / f"cached_train_examples_{args.arch}")
        train_features = processor.create_features(examples=train_examples, max_seq_len=args.train_max_seq_len,
                                                   cached_features_file=config[
                                                                            'data_dir'] / "cached_train_features_{}_{}".format(
                                                       args.train_max_seq_len, args.arch
                                                   ))
        train_dataset = processor.create_dataset(train_features)
        train_sampler = RandomSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

        valid_data = processor.get_dev(config['data_dir'] / "dev.txt")
        valid_examples = processor.create_examples(lines=valid_data, example_type='valid',
                                                   cached_examples_file=config[
                                                                            'data_dir'] / f"cached_valid_examples_{args.arch}")
        valid_features = processor.create_features(examples=valid_examples, max_seq_len=args.eval_max_seq_len,
                                                   cached_features_file=config[
                                                                            'data_dir'] / "cached_valid_features_{}_{}".format(
                                                       args.eval_max_seq_len, args.arch
                                                   ))
        valid_dataset = processor.create_dataset(valid_features)
        valid_sampler = SequentialSampler(valid_dataset)
        valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size)

        model = BertForSequenceClassification.from_pretrained(config['bert_dir'], config=bert_config)
        if args.local_rank == 0:
            torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
        model.to(args.device)
        train(args, train_dataloader, valid_dataloader, metrics, model)
    if args.do_test:
        test_data = processor.get_train(config['data_dir'] / "test.txt")
        test_examples = processor.create_examples(lines=test_data,
                                                  example_type='test',
                                                  cached_examples_file=config[
                                                  'data_dir'] / f"cached_test_examples_{args.arch}")
        test_features = processor.create_features(examples=test_examples,
                                                  max_seq_len=args.eval_max_seq_len,
                                                  cached_features_file=config[
                                                  'data_dir'] / "cached_test_features_{}_{}".format(
                                                      args.eval_max_seq_len, args.arch
                                                  ))
        test_dataset = processor.create_dataset(test_features)
        test_sampler = SequentialSampler(test_dataset)
        test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.eval_batch_size)
        model = BertForSequenceClassification.from_pretrained(args.model_save_path, config=bert_config)
        model.to(args.device)
        test_log = evaluate(args, model, test_dataloader, metrics)
        print(test_log)
def main():
    parser = ArgumentParser()
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument("--do_data", default=False, action='store_true')
    parser.add_argument("--do_split", default=False, action='store_true')
    parser.add_argument("--do_lower_case", default=False, action='store_true')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument("--line_per_file", default=1000000000, type=int)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument(
        "--short_seq_prob",
        type=float,
        default=0.1,
        help="Probability of making a short sentence as a training example")
    parser.add_argument(
        "--masked_lm_prob",
        type=float,
        default=0.15,
        help="Probability of masking each token for the LM task")
    parser.add_argument(
        "--max_predictions_per_seq",
        type=int,
        default=20,
        help="Maximum number of tokens to mask in each sequence")
    args = parser.parse_args()
    seed_everything(args.seed)

    tokenizer = BertTokenizer(vocab_file=config['checkpoint_dir'] /
                              'vocab.txt',
                              do_lower_case=args.do_lower_case)

    if args.do_split:
        corpus_path = config['data_dir'] / "corpus/corpus.txt"
        split_save_path = config['data_dir'] / "corpus/train"
        if not split_save_path.exists():
            split_save_path.mkdir(exist_ok=True)
        line_per_file = args.line_per_file
        command = f'split -a 4 -l {line_per_file} -d {corpus_path} {split_save_path}/shard_'
        os.system(f"{command}")

    if args.do_data:
        data_path = config['data_dir'] / "corpus/train"
        files = sorted([
            f for f in config['data_dir'].iterdir()
            if f.exists() and '.txt' in str(f)
        ])

        logger.info("--- pregenerate training data parameters ---")
        logger.info(f'max_seq_len: {args.max_seq_len}')
        logger.info(f"max_predictions_per_seq: {args.max_predictions_per_seq}")
        logger.info(f"masked_lm_prob: {args.masked_lm_prob}")
        logger.info(f"seed: {args.seed}")
        logger.info(f"mask file num : {args.file_num}")
        logger.info(f"train file num : {len(files)}")

        for idx in range(args.file_num):
            logger.info(f"pregenetate file_{idx}.json")
            save_filename = data_path / f"{args.data_name}_file_{idx}.json"
            num_instances = 0
            with save_filename.open('w') as fw:
                for file_idx in range(len(files)):
                    file_path = files[file_idx]
                    file_examples = create_training_instances(
                        input_file=file_path,
                        tokenizer=tokenizer,
                        max_seq_len=args.max_seq_len,
                        short_seq_prob=args.short_seq_prob,
                        masked_lm_prob=args.masked_lm_prob,
                        max_predictions_per_seq=args.max_predictions_per_seq)
                    file_examples = [
                        json.dumps(instance) for instance in file_examples
                    ]
                    for instance in file_examples:
                        fw.write(instance + '\n')
                        num_instances += 1
            metrics_file = data_path / f"{args.data_name}_file_{idx}_metrics.json"
            print(f"num_instances: {num_instances}")
            with metrics_file.open('w') as metrics_file:
                metrics = {
                    "num_training_examples": num_instances,
                    "max_seq_len": args.max_seq_len
                }
                metrics_file.write(json.dumps(metrics))
Пример #5
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument("--file_num",
                        type=int,
                        default=2,
                        help="Number of pregenerate file")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="Number of epochs to train for")
    parser.add_argument('--num_eval_steps', default=20)
    parser.add_argument('--num_save_steps', default=200)
    parser.add_argument('--share_parameter',
                        default=False,
                        action='store_true')
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument('--max_grad_norm', default=1.0, type=float)
    parser.add_argument("--learning_rate",
                        default=2e-4,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O2',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    args = parser.parse_args()

    pregenerated_data = config['data_dir'] / "corpus/train"
    assert pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"

    samples_per_epoch = 0
    for i in range(args.file_num):
        data_file = pregenerated_data / f"{args.data_name}_file_{i}.json"
        metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json"
        if data_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch += metrics['num_training_examples']
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            break
    logger.info(f"samples_per_epoch: {samples_per_epoch}")
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(f"cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}, share_parameter: {args.share_parameter}"
    )

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    seed_everything(args.seed)
    tokenizer = BertTokenizer(vocab_file=config['checkpoint_dir'] /
                              'vocab.txt')
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = BertConfig.from_json_file(
        str(config['checkpoint_dir'] / 'config.json'))
    if args.share_parameter:
        bert_config.share_parameter_across_layers = True
    else:
        bert_config.share_parameter_across_layers = False
    model = BertForPreTraining(config=bert_config)
    # model = BertForMaskedLM.from_pretrained(config['checkpoint_dir'] / 'checkpoint-580000')
    model.to(device)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    lr_scheduler = WarmupLinearSchedule(optimizer,
                                        warmup_steps=args.warmup_steps,
                                        t_total=num_train_optimization_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    global_step = 0
    mask_metric = LMAccuracy()
    sop_metric = LMAccuracy()
    tr_mask_acc = AverageMeter()
    tr_sop_acc = AverageMeter()
    tr_loss = AverageMeter()
    tr_mask_loss = AverageMeter()
    tr_sop_loss = AverageMeter()
    loss_fct = CrossEntropyLoss(ignore_index=-1)

    train_logs = {}
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info(f"  Batch size = {args.train_batch_size}")
    logger.info(f"  Num steps = {num_train_optimization_steps}")
    logger.info(f"  warmup_steps = {args.warmup_steps}")
    start_time = time.time()
    seed_everything(args.seed)  # Added here for reproducibility
    for epoch in range(args.epochs):
        for idx in range(args.file_num):
            epoch_dataset = PregeneratedDataset(
                file_id=idx,
                training_path=pregenerated_data,
                tokenizer=tokenizer,
                reduce_memory=args.reduce_memory,
                data_name=args.data_name)
            if args.local_rank == -1:
                train_sampler = RandomSampler(epoch_dataset)
            else:
                train_sampler = DistributedSampler(epoch_dataset)
            train_dataloader = DataLoader(epoch_dataset,
                                          sampler=train_sampler,
                                          batch_size=args.train_batch_size)
            model.train()
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                outputs = model(input_ids=input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask)
                prediction_scores = outputs[0]
                seq_relationship_score = outputs[1]

                masked_lm_loss = loss_fct(
                    prediction_scores.view(-1, bert_config.vocab_size),
                    lm_label_ids.view(-1))
                next_sentence_loss = loss_fct(
                    seq_relationship_score.view(-1, 2), is_next.view(-1))
                loss = masked_lm_loss + next_sentence_loss

                mask_metric(logits=prediction_scores.view(
                    -1, bert_config.vocab_size),
                            target=lm_label_ids.view(-1))
                sop_metric(logits=seq_relationship_score.view(-1, 2),
                           target=is_next.view(-1))

                if args.n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                nb_tr_steps += 1
                tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0))
                tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0))
                tr_loss.update(loss.item(), n=1)
                tr_mask_loss.update(masked_lm_loss.item(), n=1)
                tr_sop_loss.update(next_sentence_loss.item(), n=1)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)
                    lr_scheduler.step()
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.num_eval_steps == 0:
                    now = time.time()
                    eta = now - start_time
                    if eta > 3600:
                        eta_format = ('%d:%02d:%02d' %
                                      (eta // 3600,
                                       (eta % 3600) // 60, eta % 60))
                    elif eta > 60:
                        eta_format = '%d:%02d' % (eta // 60, eta % 60)
                    else:
                        eta_format = '%ds' % eta
                    train_logs['loss'] = tr_loss.avg
                    train_logs['mask_acc'] = tr_mask_acc.avg
                    train_logs['sop_acc'] = tr_sop_acc.avg
                    train_logs['mask_loss'] = tr_mask_loss.avg
                    train_logs['sop_loss'] = tr_sop_loss.avg
                    show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \
                                    f'- ETA: {eta_format}' + "-".join(
                        [f' {key}: {value:.4f} ' for key, value in train_logs.items()])
                    logger.info(show_info)
                    tr_mask_acc.reset()
                    tr_sop_acc.reset()
                    tr_loss.reset()
                    tr_mask_loss.reset()
                    tr_sop_loss.reset()
                    start_time = now

                if global_step % args.num_save_steps == 0:
                    if args.local_rank in [-1, 0] and args.num_save_steps > 0:
                        # Save model checkpoint
                        output_dir = config[
                            'checkpoint_dir'] / f'lm-checkpoint-{global_step}'
                        if not output_dir.exists():
                            output_dir.mkdir()
                        # save model
                        model_to_save = model.module if hasattr(
                            model, 'module'
                        ) else model  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(str(output_dir))
                        torch.save(args, str(output_dir / 'training_args.bin'))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)

                        # save config
                        output_config_file = output_dir / CONFIG_NAME
                        with open(str(output_config_file), 'w') as f:
                            f.write(model_to_save.config.to_json_string())

                        # save vocab
                        tokenizer.save_vocabulary(output_dir)
Пример #6
0
    np.save(f'./feature/{arch}_feature.npy', output_array, allow_pickle=False)
    np.save(f'./feature/{arch}_target.npy', target_array, allow_pickle=False)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='CIFAR10')
    parser.add_argument("--model", type=str, default='ResNet18')
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--epoch', type=int, default=30)
    parser.add_argument('--batch_size', type=int, default=128)
    parser.add_argument("--task", type=str, default='image')
    parser.add_argument("--do_lsr",
                        action='store_true',
                        help="Whether to do label smoothing.")
    args = parser.parse_args()
    seed_everything(args.seed)

    if args.do_lsr:
        arch = args.model + '_label_smoothing'
    else:
        arch = args.model

    model_path = f"./checkpoints/{arch}.bin"
    extract_feature = ExtractFeature(model_path)
    device = torch.device("cuda:0")
    extract_feature.to(device)

    data = {
        'valid':
        datasets.CIFAR10(root='./data',
                         train=False,