Esempio n. 1
0
class CoarsenBlock(torch.nn.Module):
    def __init__(self, in_channels, assign_ratio):
        super(CoarsenBlock, self).__init__()

        self.gcn_att = DenseGCNConv(in_channels, 1, bias=True)

        # self.att = torch.nn.Linear(in_channels,
        #                            hidden)
        self.assign_ratio = assign_ratio

    def normalize_batch_adj(
        self, adj
    ):  # adj shape: batch_size * num_node * num_node, D^{-1/2} (A+I) D^{-1/2}
        dim = adj.size()[1]
        A = adj + torch.eye(dim, device=adj.device)
        deg_inv_sqrt = A.sum(dim=-1).clamp(min=1).pow(-0.5)

        newA = deg_inv_sqrt.unsqueeze(-1) * A * deg_inv_sqrt.unsqueeze(-2)
        newA = (adj.sum(-1) > 0).float().unsqueeze(-1).to(adj.device) * newA
        return newA

    def reset_parameters(self):
        self.gcn_att.reset_parameters()

    def forward(self, x, adj, batch_num_nodes):
        # alpha_vec = F.softmax(self.att(x).sum(-1), -1)
        alpha_vec = F.sigmoid(torch.pow(self.gcn_att(x, adj),
                                        2)).squeeze()  # b*n*1 --> b*n

        norm_adj = self.normalize_batch_adj(adj)
        batch_size = x.size()[0]
        cut_batch_num_nodes = batch_num_nodes
        cut_value = torch.zeros_like(alpha_vec[:, 0])
        for j in range(batch_size):
            if cut_batch_num_nodes[j] > 1:
                cut_batch_num_nodes[j] = torch.ceil(
                    cut_batch_num_nodes[j].float() * self.assign_ratio) + 1
                # cut_value[j], _ = (-alpha_vec[j]).kthvalue(cut_batch_num_nodes[j], dim=-1)
                temptopk, topk_ind = alpha_vec[j].topk(cut_batch_num_nodes[j],
                                                       dim=-1)
                cut_value[j] = temptopk[-1]

            else:
                cut_value[j] = 0
        # cut_alpha_vec = torch.mul( ((alpha_vec - torch.unsqueeze(cut_value, -1))>=0).float(), alpha_vec)  # b * n
        cut_alpha_vec = F.relu(alpha_vec - torch.unsqueeze(cut_value, -1))

        S = torch.mul(norm_adj, cut_alpha_vec.unsqueeze(
            1))  # repeat rows of cut_alpha_vec, #b * n * n
        # temp_rowsum = torch.sum(S, -1).unsqueeze(-1).pow(-1)
        # # temp_rowsum[temp_rowsum > 0] = 1.0 / temp_rowsum[temp_rowsum > 0]
        # S = torch.mul(S, temp_rowsum)  # row-wise normalization
        S = F.normalize(S, p=1, dim=-1)

        embedding_tensor = torch.matmul(torch.transpose(
            S, 1, 2), x)  # equals to torch.einsum('bij,bjk->bik',...)
        new_adj = torch.matmul(torch.matmul(torch.transpose(S, 1, 2), adj),
                               S)  # batched matrix multiply

        return embedding_tensor, new_adj, S
Esempio n. 2
0
class Coarsening(torch.nn.Module):
    def __init__(self, dataset, hidden, ratio=0.25): # we only use 1 layer for coarsening
        super(Coarsening, self).__init__()

        # self.embed_block1 = GNNBlock(dataset.num_features, hidden, hidden)
        self.embed_block1 = DenseGCNConv(dataset.num_features, hidden)
        self.coarse_block1 = CoarsenBlock(hidden, ratio)
        self.embed_block2 = DenseGCNConv(hidden, dataset.num_features)

        self.jump = JumpingKnowledge(mode='cat')

        self.lin1 = Linear(hidden + dataset.num_features, hidden)
        self.lin2 = Linear(hidden, dataset.num_classes)

    def reset_parameters(self):
        self.embed_block1.reset_parameters()
        self.coarse_block1.reset_parameters()
        self.jump.reset_parameters()
        self.lin1.reset_parameters()
        self.lin2.reset_parameters()

    def forward(self, data, epsilon=0.01, opt_epochs=100):
        x, adj, mask = data.x, data.adj, data.mask
        batch_num_nodes = data.mask.sum(-1)
        x1 = F.relu(self.embed_block1(x, adj, mask, add_loop=True))
        # xs = [x1.mean(dim=1)]
        coarse_x, new_adj, S = self.coarse_block1(x1, adj, batch_num_nodes)
        xs = [coarse_x.mean(dim=1)]
        x2 = F.tanh(self.embed_block2(coarse_x, new_adj, mask, add_loop=True))
        xs.append(x2.mean(dim=1))


        opt_loss = 0.0
        for i in range(len(x)):
            x3 = self.get_nonzero_rows(x[i])
            x4 = self.get_nonzero_rows(x2[i])
            # if x3.size()[0]==0 or x4.size()[0]==0:
            #     continue
            # opt_loss += sinkhorn_loss_default(x3, x4, epsilon, niter=opt_epochs).float()
            opt_loss += sinkhorn_loss_default(x3, x2[i], epsilon, niter=opt_epochs)
        return xs, new_adj, S, opt_loss

    def predict(self, xs):
        x = self.jump(xs)
        x = F.relu(self.lin1(x))
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.lin2(x)
        return F.log_softmax(x, dim=-1)

    def get_nonzero_rows(self, M):# M is a matrix
        # row_ind = M.sum(-1).nonzero().squeeze() #nonzero has bugs in Pytorch 1.2.0.........
        #So we use other methods to take place of it
        MM, MM_ind = M.sum(-1).sort()
        N = (M.sum(-1)>0).sum()
        return M[MM_ind[:N]]


    def __repr__(self):
        return self.__class__.__name__
Esempio n. 3
0
class Block(torch.nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels):
        super(Block, self).__init__()

        self.conv1 = DenseGCNConv(in_channels, hidden_channels)
        self.conv2 = DenseGCNConv(hidden_channels, hidden_channels)
        self.lin = nn.Linear(hidden_channels + hidden_channels, out_channels)

    def reset_parameters(self):
        self.conv1.reset_parameters()
        self.conv2.reset_parameters()
        self.lin.reset_parameters()

    def forward(self, x, adj, mask=None, add_loop=True):
        x1 = F.relu(self.conv1(x, adj, mask, add_loop))
        x2 = F.relu(self.conv2(x1, adj, mask, add_loop))
        out = self.lin(torch.cat((x1, x2), -1))

        return out
Esempio n. 4
0
class GNNBlock(torch.nn.Module):  #2 layer GCN block
    def __init__(self, in_channels, hidden_channels, out_channels):
        super(GNNBlock, self).__init__()

        self.conv1 = DenseGCNConv(in_channels, hidden_channels)
        self.conv2 = DenseGCNConv(hidden_channels, out_channels)

        self.lin = torch.nn.Linear(hidden_channels + out_channels,
                                   out_channels)
        # self.lin1 = torch.nn.Linear(hidden_channels, out_channels)

    def reset_parameters(self):
        self.conv1.reset_parameters()
        self.conv2.reset_parameters()
        self.lin.reset_parameters()

    def forward(self, x, adj, mask=None, add_loop=True):
        x1 = F.relu(self.conv1(x, adj, mask, add_loop))
        x2 = F.relu(self.conv2(x1, adj, mask, add_loop))
        return self.lin(torch.cat([x1, x2], dim=-1))
Esempio n. 5
0
class MultiLayerCoarsening(torch.nn.Module):
    def __init__(self, dataset, hidden, num_layers=2, ratio=0.5):
        super(MultiLayerCoarsening, self).__init__()

        self.embed_block1 = DenseGCNConv(dataset.num_features, hidden)
        self.coarse_block1 = CoarsenBlock(hidden, ratio)
        self.embed_block2 = DenseGCNConv(hidden, dataset.num_features)
        # self.embed_block2 = GNNBlock(hidden, hidden, dataset.num_features)

        self.num_layers = num_layers

        self.jump = JumpingKnowledge(mode='cat')
        self.lin1 = Linear(hidden + dataset.num_features, hidden)
        self.lin2 = Linear(hidden, dataset.num_classes)

    def reset_parameters(self):
        self.embed_block1.reset_parameters()
        self.coarse_block1.reset_parameters()
        self.embed_block2.reset_parameters()

        self.jump.reset_parameters()
        self.lin1.reset_parameters()
        self.lin2.reset_parameters()

    def forward(self, data, epsilon=0.01, opt_epochs=100):
        x, adj, mask = data.x, data.adj, data.mask
        batch_num_nodes = data.mask.sum(-1)

        new_adjs = [adj]
        Ss = []

        x1 = F.relu(self.embed_block1(x, adj, mask, add_loop=True))
        xs = [x1.mean(dim=1)]
        new_adj = adj
        coarse_x = x1
        # coarse_x, new_adj, S = self.coarse_block1(x1, adj, batch_num_nodes)
        # new_adjs.append(new_adj)
        # Ss.append(S)

        for i in range(self.num_layers):
            coarse_x, new_adj, S = self.coarse_block1(coarse_x, new_adj,
                                                      batch_num_nodes)
            new_adjs.append(new_adj)
            Ss.append(S)
        x2 = self.embed_block2(
            coarse_x, new_adj, mask, add_loop=True
        )  #should not add ReLu, otherwise x2 could be all zero.
        xs.append(x2.mean(dim=1))
        opt_loss = 0.0
        for i in range(len(x)):
            x3 = self.get_nonzero_rows(x[i])
            x4 = self.get_nonzero_rows(x2[i])
            if x3.size()[0] == 0:
                continue
            if x4.size()[0] == 0:
                # opt_loss += sinkhorn_loss_default(x3, x2[i], epsilon, niter=opt_epochs).float()
                continue
            opt_loss += sinkhorn_loss_default(x3,
                                              x4,
                                              epsilon,
                                              niter=opt_epochs).float()

        return xs, new_adjs, Ss, opt_loss

    def get_nonzero_rows(self, M):  # M is a matrix
        # row_ind = M.sum(-1).nonzero().squeeze() #nonzero has bugs in Pytorch 1.2.0.........
        #So we use other methods to take place of it
        MM, MM_ind = torch.abs(M.sum(-1)).sort()
        N = (torch.abs(M.sum(-1)) > 0).sum()
        return M[MM_ind[:N]]

    def predict(self, xs):
        x = self.jump(xs)
        x = F.relu(self.lin1(x))
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.lin2(x)
        return F.log_softmax(x, dim=-1)

    def __repr__(self):
        return self.__class__.__name__
Esempio n. 6
0
class MultiLayerCoarsening(torch.nn.Module):
    def __init__(self, dataset, hidden, num_layers=2, ratio=0.5):
        super(MultiLayerCoarsening, self).__init__()

        self.embed_block1 = DenseGCNConv(dataset.num_features, hidden)
        self.coarse_block1 = CoarsenBlock(hidden, ratio)
        self.embed_block2 = DenseGCNConv(hidden, dataset.num_features)
        # self.embed_block2 = GNNBlock(hidden, hidden, dataset.num_features)

        self.num_layers = num_layers

        self.jump = JumpingKnowledge(mode='cat')
        self.lin1 = Linear( hidden *num_layers, hidden)
        self.lin2 = Linear(hidden, dataset.num_classes)

    def reset_parameters(self):
        self.embed_block1.reset_parameters()
        self.coarse_block1.reset_parameters()

        self.jump.reset_parameters()
        self.lin1.reset_parameters()
        self.lin2.reset_parameters()

    def forward(self, data, epsilon=0.01, opt_epochs=100):
        x, adj, mask = data.x, data.adj, data.mask
        batch_num_nodes = data.mask.sum(-1)

        new_adjs = [adj]
        Ss = []

        x1 = F.relu(self.embed_block1(x, adj, mask, add_loop=True))
        # xs = [x1.mean(dim=1)]
        xs = []
        coarse_x, new_adj, S = self.coarse_block1(x1, adj, batch_num_nodes)
        new_adjs.append(new_adj)
        Ss.append(S)
        # x2 = F.relu(self.embed_block1(coarse_x, new_adj, mask, add_loop=True))
        xs.append(coarse_x.mean(dim=1))

        x2 = self.embed_block2(coarse_x, new_adj, mask,
                               add_loop=True)  # should not add ReLu, otherwise x2 could be all zero.
        # xs.append(x2.mean(dim=1))

        for i in range(self.num_layers-1):
            x1 = F.relu(self.embed_block1(F.relu(x2), new_adj, mask, add_loop=True))
            coarse_x, new_adj, S = self.coarse_block1(x1, new_adj, batch_num_nodes)
            new_adjs.append(new_adj)
            Ss.append(S)
            xs.append(coarse_x.mean(dim=1))
            x2 = self.embed_block2(coarse_x, new_adj, mask, add_loop=True)#should not add ReLu, otherwise x2 could be all zero.
        # xs.append(x2.mean(dim=1))
        opt_loss = 0.0
        for i in range(len(x)):
            x3 = self.get_nonzero_rows(x[i])
            x4 = self.get_nonzero_rows(x2[i])
            if x3.size()[0]==0:
                continue
            if x4.size()[0]==0:
                opt_loss += sinkhorn_loss_default(x3, x2[i], epsilon, niter=opt_epochs).float()
                continue
            opt_loss += sinkhorn_loss_default(x3, x4, epsilon, niter=opt_epochs).float()

        return xs, new_adjs, Ss, opt_loss

    def get_nonzero_rows(self, M):# M is a matrix
        # row_ind = M.sum(-1).nonzero().squeeze() #nonzero has bugs in Pytorch 1.2.0.........
        #So we use other methods to take place of it
        MM, MM_ind = torch.abs(M.sum(-1)).sort()
        N = (torch.abs(M.sum(-1))>0).sum()
        return M[MM_ind[:N]]

    def predict(self, xs):
        x = self.jump(xs)
        x = F.relu(self.lin1(x))
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.lin2(x)
        return F.log_softmax(x, dim=-1)


    def test(self, train_z, train_y, test_z, test_y, solver='lbfgs',
             multi_class='auto', *args, **kwargs):
        r"""Evaluates latent space quality via a logistic regression downstream
        task."""
        clf = LogisticRegression(solver=solver, multi_class=multi_class, *args,
                                 **kwargs).fit(train_z.detach().cpu().numpy(),
                                               train_y.detach().cpu().numpy())
        return clf.score(test_z.detach().cpu().numpy(),
                         test_y.detach().cpu().numpy())

    def __repr__(self):
        return self.__class__.__name__