class CoarsenBlock(torch.nn.Module): def __init__(self, in_channels, assign_ratio): super(CoarsenBlock, self).__init__() self.gcn_att = DenseGCNConv(in_channels, 1, bias=True) # self.att = torch.nn.Linear(in_channels, # hidden) self.assign_ratio = assign_ratio def normalize_batch_adj( self, adj ): # adj shape: batch_size * num_node * num_node, D^{-1/2} (A+I) D^{-1/2} dim = adj.size()[1] A = adj + torch.eye(dim, device=adj.device) deg_inv_sqrt = A.sum(dim=-1).clamp(min=1).pow(-0.5) newA = deg_inv_sqrt.unsqueeze(-1) * A * deg_inv_sqrt.unsqueeze(-2) newA = (adj.sum(-1) > 0).float().unsqueeze(-1).to(adj.device) * newA return newA def reset_parameters(self): self.gcn_att.reset_parameters() def forward(self, x, adj, batch_num_nodes): # alpha_vec = F.softmax(self.att(x).sum(-1), -1) alpha_vec = F.sigmoid(torch.pow(self.gcn_att(x, adj), 2)).squeeze() # b*n*1 --> b*n norm_adj = self.normalize_batch_adj(adj) batch_size = x.size()[0] cut_batch_num_nodes = batch_num_nodes cut_value = torch.zeros_like(alpha_vec[:, 0]) for j in range(batch_size): if cut_batch_num_nodes[j] > 1: cut_batch_num_nodes[j] = torch.ceil( cut_batch_num_nodes[j].float() * self.assign_ratio) + 1 # cut_value[j], _ = (-alpha_vec[j]).kthvalue(cut_batch_num_nodes[j], dim=-1) temptopk, topk_ind = alpha_vec[j].topk(cut_batch_num_nodes[j], dim=-1) cut_value[j] = temptopk[-1] else: cut_value[j] = 0 # cut_alpha_vec = torch.mul( ((alpha_vec - torch.unsqueeze(cut_value, -1))>=0).float(), alpha_vec) # b * n cut_alpha_vec = F.relu(alpha_vec - torch.unsqueeze(cut_value, -1)) S = torch.mul(norm_adj, cut_alpha_vec.unsqueeze( 1)) # repeat rows of cut_alpha_vec, #b * n * n # temp_rowsum = torch.sum(S, -1).unsqueeze(-1).pow(-1) # # temp_rowsum[temp_rowsum > 0] = 1.0 / temp_rowsum[temp_rowsum > 0] # S = torch.mul(S, temp_rowsum) # row-wise normalization S = F.normalize(S, p=1, dim=-1) embedding_tensor = torch.matmul(torch.transpose( S, 1, 2), x) # equals to torch.einsum('bij,bjk->bik',...) new_adj = torch.matmul(torch.matmul(torch.transpose(S, 1, 2), adj), S) # batched matrix multiply return embedding_tensor, new_adj, S
class Coarsening(torch.nn.Module): def __init__(self, dataset, hidden, ratio=0.25): # we only use 1 layer for coarsening super(Coarsening, self).__init__() # self.embed_block1 = GNNBlock(dataset.num_features, hidden, hidden) self.embed_block1 = DenseGCNConv(dataset.num_features, hidden) self.coarse_block1 = CoarsenBlock(hidden, ratio) self.embed_block2 = DenseGCNConv(hidden, dataset.num_features) self.jump = JumpingKnowledge(mode='cat') self.lin1 = Linear(hidden + dataset.num_features, hidden) self.lin2 = Linear(hidden, dataset.num_classes) def reset_parameters(self): self.embed_block1.reset_parameters() self.coarse_block1.reset_parameters() self.jump.reset_parameters() self.lin1.reset_parameters() self.lin2.reset_parameters() def forward(self, data, epsilon=0.01, opt_epochs=100): x, adj, mask = data.x, data.adj, data.mask batch_num_nodes = data.mask.sum(-1) x1 = F.relu(self.embed_block1(x, adj, mask, add_loop=True)) # xs = [x1.mean(dim=1)] coarse_x, new_adj, S = self.coarse_block1(x1, adj, batch_num_nodes) xs = [coarse_x.mean(dim=1)] x2 = F.tanh(self.embed_block2(coarse_x, new_adj, mask, add_loop=True)) xs.append(x2.mean(dim=1)) opt_loss = 0.0 for i in range(len(x)): x3 = self.get_nonzero_rows(x[i]) x4 = self.get_nonzero_rows(x2[i]) # if x3.size()[0]==0 or x4.size()[0]==0: # continue # opt_loss += sinkhorn_loss_default(x3, x4, epsilon, niter=opt_epochs).float() opt_loss += sinkhorn_loss_default(x3, x2[i], epsilon, niter=opt_epochs) return xs, new_adj, S, opt_loss def predict(self, xs): x = self.jump(xs) x = F.relu(self.lin1(x)) x = F.dropout(x, p=0.5, training=self.training) x = self.lin2(x) return F.log_softmax(x, dim=-1) def get_nonzero_rows(self, M):# M is a matrix # row_ind = M.sum(-1).nonzero().squeeze() #nonzero has bugs in Pytorch 1.2.0......... #So we use other methods to take place of it MM, MM_ind = M.sum(-1).sort() N = (M.sum(-1)>0).sum() return M[MM_ind[:N]] def __repr__(self): return self.__class__.__name__
class Block(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super(Block, self).__init__() self.conv1 = DenseGCNConv(in_channels, hidden_channels) self.conv2 = DenseGCNConv(hidden_channels, hidden_channels) self.lin = nn.Linear(hidden_channels + hidden_channels, out_channels) def reset_parameters(self): self.conv1.reset_parameters() self.conv2.reset_parameters() self.lin.reset_parameters() def forward(self, x, adj, mask=None, add_loop=True): x1 = F.relu(self.conv1(x, adj, mask, add_loop)) x2 = F.relu(self.conv2(x1, adj, mask, add_loop)) out = self.lin(torch.cat((x1, x2), -1)) return out
class GNNBlock(torch.nn.Module): #2 layer GCN block def __init__(self, in_channels, hidden_channels, out_channels): super(GNNBlock, self).__init__() self.conv1 = DenseGCNConv(in_channels, hidden_channels) self.conv2 = DenseGCNConv(hidden_channels, out_channels) self.lin = torch.nn.Linear(hidden_channels + out_channels, out_channels) # self.lin1 = torch.nn.Linear(hidden_channels, out_channels) def reset_parameters(self): self.conv1.reset_parameters() self.conv2.reset_parameters() self.lin.reset_parameters() def forward(self, x, adj, mask=None, add_loop=True): x1 = F.relu(self.conv1(x, adj, mask, add_loop)) x2 = F.relu(self.conv2(x1, adj, mask, add_loop)) return self.lin(torch.cat([x1, x2], dim=-1))
class MultiLayerCoarsening(torch.nn.Module): def __init__(self, dataset, hidden, num_layers=2, ratio=0.5): super(MultiLayerCoarsening, self).__init__() self.embed_block1 = DenseGCNConv(dataset.num_features, hidden) self.coarse_block1 = CoarsenBlock(hidden, ratio) self.embed_block2 = DenseGCNConv(hidden, dataset.num_features) # self.embed_block2 = GNNBlock(hidden, hidden, dataset.num_features) self.num_layers = num_layers self.jump = JumpingKnowledge(mode='cat') self.lin1 = Linear(hidden + dataset.num_features, hidden) self.lin2 = Linear(hidden, dataset.num_classes) def reset_parameters(self): self.embed_block1.reset_parameters() self.coarse_block1.reset_parameters() self.embed_block2.reset_parameters() self.jump.reset_parameters() self.lin1.reset_parameters() self.lin2.reset_parameters() def forward(self, data, epsilon=0.01, opt_epochs=100): x, adj, mask = data.x, data.adj, data.mask batch_num_nodes = data.mask.sum(-1) new_adjs = [adj] Ss = [] x1 = F.relu(self.embed_block1(x, adj, mask, add_loop=True)) xs = [x1.mean(dim=1)] new_adj = adj coarse_x = x1 # coarse_x, new_adj, S = self.coarse_block1(x1, adj, batch_num_nodes) # new_adjs.append(new_adj) # Ss.append(S) for i in range(self.num_layers): coarse_x, new_adj, S = self.coarse_block1(coarse_x, new_adj, batch_num_nodes) new_adjs.append(new_adj) Ss.append(S) x2 = self.embed_block2( coarse_x, new_adj, mask, add_loop=True ) #should not add ReLu, otherwise x2 could be all zero. xs.append(x2.mean(dim=1)) opt_loss = 0.0 for i in range(len(x)): x3 = self.get_nonzero_rows(x[i]) x4 = self.get_nonzero_rows(x2[i]) if x3.size()[0] == 0: continue if x4.size()[0] == 0: # opt_loss += sinkhorn_loss_default(x3, x2[i], epsilon, niter=opt_epochs).float() continue opt_loss += sinkhorn_loss_default(x3, x4, epsilon, niter=opt_epochs).float() return xs, new_adjs, Ss, opt_loss def get_nonzero_rows(self, M): # M is a matrix # row_ind = M.sum(-1).nonzero().squeeze() #nonzero has bugs in Pytorch 1.2.0......... #So we use other methods to take place of it MM, MM_ind = torch.abs(M.sum(-1)).sort() N = (torch.abs(M.sum(-1)) > 0).sum() return M[MM_ind[:N]] def predict(self, xs): x = self.jump(xs) x = F.relu(self.lin1(x)) x = F.dropout(x, p=0.5, training=self.training) x = self.lin2(x) return F.log_softmax(x, dim=-1) def __repr__(self): return self.__class__.__name__
class MultiLayerCoarsening(torch.nn.Module): def __init__(self, dataset, hidden, num_layers=2, ratio=0.5): super(MultiLayerCoarsening, self).__init__() self.embed_block1 = DenseGCNConv(dataset.num_features, hidden) self.coarse_block1 = CoarsenBlock(hidden, ratio) self.embed_block2 = DenseGCNConv(hidden, dataset.num_features) # self.embed_block2 = GNNBlock(hidden, hidden, dataset.num_features) self.num_layers = num_layers self.jump = JumpingKnowledge(mode='cat') self.lin1 = Linear( hidden *num_layers, hidden) self.lin2 = Linear(hidden, dataset.num_classes) def reset_parameters(self): self.embed_block1.reset_parameters() self.coarse_block1.reset_parameters() self.jump.reset_parameters() self.lin1.reset_parameters() self.lin2.reset_parameters() def forward(self, data, epsilon=0.01, opt_epochs=100): x, adj, mask = data.x, data.adj, data.mask batch_num_nodes = data.mask.sum(-1) new_adjs = [adj] Ss = [] x1 = F.relu(self.embed_block1(x, adj, mask, add_loop=True)) # xs = [x1.mean(dim=1)] xs = [] coarse_x, new_adj, S = self.coarse_block1(x1, adj, batch_num_nodes) new_adjs.append(new_adj) Ss.append(S) # x2 = F.relu(self.embed_block1(coarse_x, new_adj, mask, add_loop=True)) xs.append(coarse_x.mean(dim=1)) x2 = self.embed_block2(coarse_x, new_adj, mask, add_loop=True) # should not add ReLu, otherwise x2 could be all zero. # xs.append(x2.mean(dim=1)) for i in range(self.num_layers-1): x1 = F.relu(self.embed_block1(F.relu(x2), new_adj, mask, add_loop=True)) coarse_x, new_adj, S = self.coarse_block1(x1, new_adj, batch_num_nodes) new_adjs.append(new_adj) Ss.append(S) xs.append(coarse_x.mean(dim=1)) x2 = self.embed_block2(coarse_x, new_adj, mask, add_loop=True)#should not add ReLu, otherwise x2 could be all zero. # xs.append(x2.mean(dim=1)) opt_loss = 0.0 for i in range(len(x)): x3 = self.get_nonzero_rows(x[i]) x4 = self.get_nonzero_rows(x2[i]) if x3.size()[0]==0: continue if x4.size()[0]==0: opt_loss += sinkhorn_loss_default(x3, x2[i], epsilon, niter=opt_epochs).float() continue opt_loss += sinkhorn_loss_default(x3, x4, epsilon, niter=opt_epochs).float() return xs, new_adjs, Ss, opt_loss def get_nonzero_rows(self, M):# M is a matrix # row_ind = M.sum(-1).nonzero().squeeze() #nonzero has bugs in Pytorch 1.2.0......... #So we use other methods to take place of it MM, MM_ind = torch.abs(M.sum(-1)).sort() N = (torch.abs(M.sum(-1))>0).sum() return M[MM_ind[:N]] def predict(self, xs): x = self.jump(xs) x = F.relu(self.lin1(x)) x = F.dropout(x, p=0.5, training=self.training) x = self.lin2(x) return F.log_softmax(x, dim=-1) def test(self, train_z, train_y, test_z, test_y, solver='lbfgs', multi_class='auto', *args, **kwargs): r"""Evaluates latent space quality via a logistic regression downstream task.""" clf = LogisticRegression(solver=solver, multi_class=multi_class, *args, **kwargs).fit(train_z.detach().cpu().numpy(), train_y.detach().cpu().numpy()) return clf.score(test_z.detach().cpu().numpy(), test_y.detach().cpu().numpy()) def __repr__(self): return self.__class__.__name__