def main(): # 第四个参数:use_gpu,不需要显示的指定 use_gpu = torch.cuda.is_available() # if args.use_cpu: use_gpu = False pin_memory = True if use_gpu else False # 其实可以换一种写法 dataset = data_manager.Market1501(root='data') # data augmentation transform_test = T.Compose([ # T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # 第二个参数:queryloader queryloader = DataLoader( # 问题:dataset.query哪里来的? 答:来自dataset = data_manager.Market1501(root='data') ImageDataset(dataset.query, transform=transform_test), batch_size=32, shuffle=False, num_workers=4, pin_memory=pin_memory, drop_last=False, ) # 第三个参数:galleryloader galleryloader = DataLoader( ImageDataset(dataset.gallery, transform=transform_test), batch_size=32, shuffle=False, num_workers=4, pin_memory=pin_memory, drop_last=False, ) model = models.init_model(name='resnet50', num_classes=8, loss={'softmax', 'metric'}, aligned=True, use_gpu=use_gpu) print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters()) / 1000000.0)) criterion_class = CrossEntropyLoss(use_gpu=use_gpu) criterion_metric = TripletLossAlignedReID(margin=0.3) optimizer = init_optim('adam', model.parameters(), 0.0002, 0.0005) scheduler = lr_scheduler.StepLR(optimizer, step_size=150, gamma=0.1) start_epoch = 0 if use_gpu: model = nn.DataParallel(model).cuda() # embed() test(model, queryloader, galleryloader, use_gpu) return 0
help="Number of epochs between each test stage", type=int, default=1) parser.add_argument("--train_batch_size", help="Batch size in the training stage", type=int, default=4) parser.add_argument("--test_batch_size", help="Batch size in the testing stage", type=int, default=4) args = parser.parse_args() args.input_size = [int(item) for item in args.input_size.split(',')] weight = torch.FloatTensor([1 - args.class_weight, args.class_weight]).cuda() loss_fn_seg = CrossEntropyLoss(weight=weight) loss_fn_rec = MSELoss() """ Setup logging directory """ print('[%s] Setting up log directories' % (datetime.datetime.now())) if not os.path.exists(args.log_dir): os.mkdir(args.log_dir) if args.write_dir is not None: if not os.path.exists(args.write_dir): os.mkdir(args.write_dir) os.mkdir(os.path.join(args.write_dir, 'segmentation_last_checkpoint')) os.mkdir(os.path.join(args.write_dir, 'segmentation_best_checkpoint')) """ Load the data """
def main(): use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False pin_memory = True if use_gpu else False if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_vid_dataset( root=args.root, name=args.dataset, split_id=args.split_id, cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split, ) # data augmentation transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) trainloader = DataLoader( ImageDataset(dataset.train, transform=transform_train), sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( ImageDataset(dataset.query, transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( ImageDataset(dataset.gallery, transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'softmax','metric'}, aligned =True, use_gpu=use_gpu) print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0)) if args.labelsmooth: criterion_class = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu) else: criterion_class = CrossEntropyLoss(use_gpu=use_gpu) criterion_metric = TripletLossAlignedReID(margin=args.margin) optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay) if args.stepsize > 0: scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma) start_epoch = args.start_epoch if args.resume: print("Loading checkpoint from '{}'".format(args.resume)) checkpoint = torch.load(args.resume) model_dict = model.state_dict() # 1. filter out unnecessary keys checkpoint = {k: v for k, v in checkpoint.items() if k in model_dict} # 2. overwrite entries in the existing state dict model_dict.update(pretrained_dict) model.load_state_dict(checkpoint['state_dict']) start_epoch = checkpoint['epoch'] if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") test(model, queryloader, galleryloader, use_gpu) return 0 start_time = time.time() train_time = 0 best_rank1 = -np.inf best_epoch = 0 print("==> Start training") for epoch in range(start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion_class, criterion_metric, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) if args.stepsize > 0: scheduler.step() if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or ( epoch + 1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint({ 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
help="Number of epochs between each test stage", type=int, default=1) parser.add_argument("--train_batch_size", help="Batch size in the training stage", type=int, default=4) parser.add_argument("--test_batch_size", help="Batch size in the testing stage", type=int, default=4) args = parser.parse_args() args.input_size = [int(item) for item in args.input_size.split(',')] args.lambdas = [float(item) for item in args.lambdas.split(',')] loss_fn_seg = CrossEntropyLoss() """ Setup logging directory """ print('[%s] Setting up log directories' % (datetime.datetime.now())) if not os.path.exists(args.log_dir): os.mkdir(args.log_dir) if args.write_dir is not None: if not os.path.exists(args.write_dir): os.mkdir(args.write_dir) os.mkdir(os.path.join(args.write_dir, 'tar_segmentation_last')) os.mkdir(os.path.join(args.write_dir, 'tar_segmentation_best')) """ Load the data """ input_shape = (1, args.input_size[0], args.input_size[1])
## MODEL OPTIONS mdl_arch = 'resnet50' ## Network architecture mdl_weight = '\\checkpoint_ep300.pth' ## Path to the weight file mdl_num_classes = 751 ## For MarketNet1501 labelsmooth = False ## Load the model print("Initializing model: {}".format(mdl_arch)) model = models.init_model(name=mdl_arch, num_classes=mdl_num_classes, loss={'softmax','metric'}, aligned =True, use_gpu=use_gpu) if labelsmooth: criterion_class = CrossEntropyLabelSmooth(num_classes=mdl_num_classes, use_gpu=use_gpu) else: criterion_class = CrossEntropyLoss(use_gpu=use_gpu) ## Load the weights print("Loading checkpoint from '{}'".format(mdl_weight)) checkpoint = torch.load(mdl_weight) model.load_state_dict(checkpoint['state_dict']) if use_gpu: model = nn.DataParallel(model).cuda() print("Evaluate only") distmat = test(model, queryloader, galleryloader, use_gpu)
def main(): batch_time_total = AverageMeter() start = time.time() # 第四个参数:use_gpu,不需要显示的指定 use_gpu = torch.cuda.is_available() # if args.use_cpu: use_gpu = False pin_memory = True if use_gpu else False # 其实可以换一种写法 dataset = data_manager.Market1501(root='data') # data augmentation transform_test = T.Compose([ # T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # 第二个参数:queryloader queryloader = DataLoader( # 问题:dataset.query哪里来的? 答:来自data_manager中self.query = query # dataset.query本质为路径集 ImageDataset(dataset.query, transform=transform_test), batch_size=32, shuffle=False, num_workers=4, pin_memory=pin_memory, drop_last=False, ) # 第三个参数:galleryloader galleryloader = DataLoader( ImageDataset(dataset.gallery, transform=transform_test), batch_size=32, shuffle=False, num_workers=4, pin_memory=pin_memory, drop_last=False, ) model = models.init_model(name='resnet50', num_classes=8, loss={'softmax', 'metric'}, aligned=True, use_gpu=use_gpu) print("Model size: {:.5f}M".format( sum(p.numel() for p in model.parameters()) / 1000000.0)) criterion_class = CrossEntropyLoss(use_gpu=use_gpu) criterion_metric = TripletLossAlignedReID(margin=0.3) optimizer = init_optim('adam', model.parameters(), 0.0002, 0.0005) scheduler = lr_scheduler.StepLR(optimizer, step_size=150, gamma=0.1) start_epoch = 0 if use_gpu: model = nn.DataParallel(model).cuda() # embed() num, cmc, mAP = test(model, queryloader, galleryloader, use_gpu) end = time.time() time_stamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) item_to_json = { "time_stamp": time_stamp, "test_results": { "object_num": num, "cmc": cmc, "mAP": mAP, "time_consumption(s)": end - start } } path = "./output/" + "test_results" + ".json" s = SaveJson() s.save_file(path, item_to_json) # print("==>测试用时: {:.3f} s".format(end - start)) print(" test time(s) | {:.3f}".format(end - start)) print(" ------------------------------") print("") # print('------测试结束------') return 0
def main(): use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False pin_memory = True if use_gpu else False if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_img_dataset( root=args.root, name=args.dataset, split_id=args.split_id, ) # data augmentation transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) trainloader = DataLoader( ImageDataset(dataset.train, transform=transform_train), sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'softmax', 'metric'}, aligned=True, use_gpu=use_gpu) print("Model size: {:.5f}M".format( sum(p.numel() for p in model.parameters()) / 1000000.0)) if args.labelsmooth: criterion_class = CrossEntropyLabelSmooth( num_classes=dataset.num_train_pids, use_gpu=use_gpu) else: criterion_class = CrossEntropyLoss(use_gpu=use_gpu) criterion_metric = TripletLossAlignedReID(margin=args.margin) optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay) if args.stepsize > 0: scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma) start_epoch = args.start_epoch if args.resume: print("Loading checkpoint from '{}'".format(args.resume)) checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) start_epoch = checkpoint['epoch'] if use_gpu: model = nn.DataParallel(model).cuda() start_time = time.time() train_time = 0 best_rank1 = -np.inf best_epoch = 0 print("==> Start training") cnt_n = 0 for epoch in range(start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion_class, criterion_metric, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) cnt_n = cnt_n + 1 if args.stepsize > 0: scheduler.step() if (cnt_n % 40) == 0: #### Saving models after each 40 epochs print("==> Saving") if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() is_best = 0 save_checkpoint( { 'state_dict': state_dict, ### rank1 and is_best are kept same as original code. Don't want to mess up the saving 'rank1': '###', 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print( "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.". format(elapsed, train_time))
def main(): # 判断是否使用gpu use_gpu = torch.cuda.is_available() # 若指定只使用cpu,则置use_gpu = False if args.use_cpu: use_gpu = False pin_memory = True if use_gpu else False # 避免内存浪费 # 日志打印设置 # 训练阶段存放在log_train.txt,测试阶段存放在log_test.txt if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) # 若使用gpu,进行相关优化设置 if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") dataset = data_manager.init_img_dataset(root=args.root, name=args.dataset, split_id=args.split_id) # 创建dataloader & 进行 augmentation,训练时进行数据增广,测试时不需要 # 3个data_loader train query gallery # 训练用transform transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), #归一化 ]) # 测试用transform transform_test = T.Compose([ T.Resize((args.height, args.width)), #只做resize处理,将图像统一到同一尺寸 T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # 导入dataset_loader # param@drop_last:把尾部多余数据扔掉,不用做训练了 trainloader = DataLoader( ImageDataset(dataset.train, transform=transform_train), sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) # param@drop_last:在test阶段,每一个样本都不能丢 # param@shuffle:在test阶段就不要打乱了 queryloader = DataLoader( ImageDataset(dataset.query, transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( ImageDataset(dataset.gallery, transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) # 初始化模型Resnet50 print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'softmax', 'metric'}, aligned=True, use_gpu=use_gpu) print("Model size: {:.5f}M".format( sum(p.numel() for p in model.parameters()) / 1000000.0)) # 确定损失类型 criterion_class = CrossEntropyLoss(use_gpu=use_gpu) # 优化器 # [email protected]():更新模型的所有参数 若更新某一层:model.conv1 model.fc;若更新两层:nn.Sequential([model.conv1,model.conv2]) # param@lr:learning rate,学习率 # param@decay:模型的正则化参数 optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay) # 学习率衰减,逐步减小步长,采用阶梯型衰减 # param@gamma:衰减倍率 if args.stepsize > 0: scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma) # 设置开始训练的epoch start_epoch = args.start_epoch # 是否要恢复模型 if args.resume: print("Loading checkpoint from '{}'".format(args.resume)) checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) start_epoch = checkpoint['epoch'] # 是否使用并行 if use_gpu: model = nn.DataParallel(model).cuda() # 若是进行测试 if args.evaluate: print("Evaluate only") test(model, queryloader, galleryloader, use_gpu) return 0 print('start training') # 开始进行训练 for epoch in range(start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion_class, optimizer, trainloader, use_gpu) # save_checkpoint是个字典dic train_time += round(time.time() - start_train_time) if args.stepsize > 0: scheduler.step() if (epoch + 1) > args.start_eval and args.eval_step > 0 and ( epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint( { 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format( best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print( "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.". format(elapsed, train_time))