Пример #1
0
def main():
    # 第四个参数:use_gpu,不需要显示的指定
    use_gpu = torch.cuda.is_available()
    # if args.use_cpu: use_gpu = False
    pin_memory = True if use_gpu else False

    # 其实可以换一种写法
    dataset = data_manager.Market1501(root='data')

    # data augmentation
    transform_test = T.Compose([
        # T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    # 第二个参数:queryloader
    queryloader = DataLoader(
        # 问题:dataset.query哪里来的? 答:来自dataset = data_manager.Market1501(root='data')
        ImageDataset(dataset.query, transform=transform_test),
        batch_size=32, shuffle=False, num_workers=4,
        pin_memory=pin_memory, drop_last=False,
    )
    # 第三个参数:galleryloader
    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test),
        batch_size=32, shuffle=False, num_workers=4,
        pin_memory=pin_memory, drop_last=False,
    )

    model = models.init_model(name='resnet50', num_classes=8, loss={'softmax', 'metric'},
                              aligned=True, use_gpu=use_gpu)

    print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters()) / 1000000.0))

    criterion_class = CrossEntropyLoss(use_gpu=use_gpu)
    criterion_metric = TripletLossAlignedReID(margin=0.3)
    optimizer = init_optim('adam', model.parameters(), 0.0002, 0.0005)


    scheduler = lr_scheduler.StepLR(optimizer, step_size=150, gamma=0.1)
    start_epoch = 0

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    # embed()
    test(model, queryloader, galleryloader, use_gpu)

    return 0
Пример #2
0
                    help="Number of epochs between each test stage",
                    type=int,
                    default=1)
parser.add_argument("--train_batch_size",
                    help="Batch size in the training stage",
                    type=int,
                    default=4)
parser.add_argument("--test_batch_size",
                    help="Batch size in the testing stage",
                    type=int,
                    default=4)

args = parser.parse_args()
args.input_size = [int(item) for item in args.input_size.split(',')]
weight = torch.FloatTensor([1 - args.class_weight, args.class_weight]).cuda()
loss_fn_seg = CrossEntropyLoss(weight=weight)
loss_fn_rec = MSELoss()
"""
    Setup logging directory
"""
print('[%s] Setting up log directories' % (datetime.datetime.now()))
if not os.path.exists(args.log_dir):
    os.mkdir(args.log_dir)
if args.write_dir is not None:
    if not os.path.exists(args.write_dir):
        os.mkdir(args.write_dir)
    os.mkdir(os.path.join(args.write_dir, 'segmentation_last_checkpoint'))
    os.mkdir(os.path.join(args.write_dir, 'segmentation_best_checkpoint'))
"""
    Load the data
"""
Пример #3
0
def main():
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False
    pin_memory = True if use_gpu else False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_vid_dataset(
        root=args.root, name=args.dataset, split_id=args.split_id,
        cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split,
    )

    # data augmentation
    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    trainloader = DataLoader(
        ImageDataset(dataset.train, transform=transform_train),
        sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances),
        batch_size=args.train_batch, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=True,
    )

    queryloader = DataLoader(
        ImageDataset(dataset.query, transform=transform_test),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test),
        batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
        pin_memory=pin_memory, drop_last=False,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'softmax','metric'}, aligned =True, use_gpu=use_gpu)
    print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0))
    if args.labelsmooth:
        criterion_class = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
    else:
        criterion_class = CrossEntropyLoss(use_gpu=use_gpu)
    criterion_metric = TripletLossAlignedReID(margin=args.margin)
    optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)

    if args.stepsize > 0:
        scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
    start_epoch = args.start_epoch

    if args.resume:
        print("Loading checkpoint from '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        model_dict = model.state_dict()
        # 1. filter out unnecessary keys
        checkpoint = {k: v for k, v in checkpoint.items() if k in model_dict}
        # 2. overwrite entries in the existing state dict
        model_dict.update(pretrained_dict)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, use_gpu)
        return 0

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")

    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion_class, criterion_metric, optimizer, trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)

        if args.stepsize > 0: scheduler.step()

        if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (
                epoch + 1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            save_checkpoint({
                'state_dict': state_dict,
                'rank1': rank1,
                'epoch': epoch,
            }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
Пример #4
0
                    help="Number of epochs between each test stage",
                    type=int,
                    default=1)
parser.add_argument("--train_batch_size",
                    help="Batch size in the training stage",
                    type=int,
                    default=4)
parser.add_argument("--test_batch_size",
                    help="Batch size in the testing stage",
                    type=int,
                    default=4)

args = parser.parse_args()
args.input_size = [int(item) for item in args.input_size.split(',')]
args.lambdas = [float(item) for item in args.lambdas.split(',')]
loss_fn_seg = CrossEntropyLoss()
"""
    Setup logging directory
"""
print('[%s] Setting up log directories' % (datetime.datetime.now()))
if not os.path.exists(args.log_dir):
    os.mkdir(args.log_dir)
if args.write_dir is not None:
    if not os.path.exists(args.write_dir):
        os.mkdir(args.write_dir)
    os.mkdir(os.path.join(args.write_dir, 'tar_segmentation_last'))
    os.mkdir(os.path.join(args.write_dir, 'tar_segmentation_best'))
"""
    Load the data
"""
input_shape = (1, args.input_size[0], args.input_size[1])
## MODEL OPTIONS
mdl_arch        = 'resnet50'                ## Network architecture
mdl_weight      = '\\checkpoint_ep300.pth'  ## Path to the weight file
mdl_num_classes = 751                       ## For MarketNet1501
labelsmooth = False

## Load the model
print("Initializing model: {}".format(mdl_arch))
model = models.init_model(name=mdl_arch,
                          num_classes=mdl_num_classes,
                          loss={'softmax','metric'}, 
                          aligned =True, 
                          use_gpu=use_gpu)

if labelsmooth:
    criterion_class = CrossEntropyLabelSmooth(num_classes=mdl_num_classes, use_gpu=use_gpu)
else:
    criterion_class = CrossEntropyLoss(use_gpu=use_gpu)

## Load the weights
print("Loading checkpoint from '{}'".format(mdl_weight))
checkpoint = torch.load(mdl_weight)
model.load_state_dict(checkpoint['state_dict'])

if use_gpu:
    model = nn.DataParallel(model).cuda()

print("Evaluate only")
distmat = test(model, queryloader, galleryloader, use_gpu)
Пример #6
0
def main():
    batch_time_total = AverageMeter()
    start = time.time()
    # 第四个参数:use_gpu,不需要显示的指定
    use_gpu = torch.cuda.is_available()
    # if args.use_cpu: use_gpu = False
    pin_memory = True if use_gpu else False

    # 其实可以换一种写法
    dataset = data_manager.Market1501(root='data')

    # data augmentation
    transform_test = T.Compose([
        # T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    # 第二个参数:queryloader
    queryloader = DataLoader(
        # 问题:dataset.query哪里来的? 答:来自data_manager中self.query = query
        # dataset.query本质为路径集
        ImageDataset(dataset.query, transform=transform_test),
        batch_size=32,
        shuffle=False,
        num_workers=4,
        pin_memory=pin_memory,
        drop_last=False,
    )
    # 第三个参数:galleryloader
    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test),
        batch_size=32,
        shuffle=False,
        num_workers=4,
        pin_memory=pin_memory,
        drop_last=False,
    )

    model = models.init_model(name='resnet50',
                              num_classes=8,
                              loss={'softmax', 'metric'},
                              aligned=True,
                              use_gpu=use_gpu)

    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))

    criterion_class = CrossEntropyLoss(use_gpu=use_gpu)
    criterion_metric = TripletLossAlignedReID(margin=0.3)
    optimizer = init_optim('adam', model.parameters(), 0.0002, 0.0005)

    scheduler = lr_scheduler.StepLR(optimizer, step_size=150, gamma=0.1)
    start_epoch = 0

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    # embed()
    num, cmc, mAP = test(model, queryloader, galleryloader, use_gpu)
    end = time.time()
    time_stamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())

    item_to_json = {
        "time_stamp": time_stamp,
        "test_results": {
            "object_num": num,
            "cmc": cmc,
            "mAP": mAP,
            "time_consumption(s)": end - start
        }
    }
    path = "./output/" + "test_results" + ".json"

    s = SaveJson()

    s.save_file(path, item_to_json)

    # print("==>测试用时: {:.3f} s".format(end - start))

    print("  test time(s)    | {:.3f}".format(end - start))
    print("  ------------------------------")
    print("")
    # print('------测试结束------')

    return 0
def main():
    use_gpu = torch.cuda.is_available()
    if args.use_cpu: use_gpu = False
    pin_memory = True if use_gpu else False

    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    print("Initializing dataset {}".format(args.dataset))
    dataset = data_manager.init_img_dataset(
        root=args.root,
        name=args.dataset,
        split_id=args.split_id,
    )

    # data augmentation
    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    trainloader = DataLoader(
        ImageDataset(dataset.train, transform=transform_train),
        sampler=RandomIdentitySampler(dataset.train,
                                      num_instances=args.num_instances),
        batch_size=args.train_batch,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              num_classes=dataset.num_train_pids,
                              loss={'softmax', 'metric'},
                              aligned=True,
                              use_gpu=use_gpu)
    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))
    if args.labelsmooth:
        criterion_class = CrossEntropyLabelSmooth(
            num_classes=dataset.num_train_pids, use_gpu=use_gpu)
    else:
        criterion_class = CrossEntropyLoss(use_gpu=use_gpu)
    criterion_metric = TripletLossAlignedReID(margin=args.margin)
    optimizer = init_optim(args.optim, model.parameters(), args.lr,
                           args.weight_decay)

    if args.stepsize > 0:
        scheduler = lr_scheduler.StepLR(optimizer,
                                        step_size=args.stepsize,
                                        gamma=args.gamma)
    start_epoch = args.start_epoch

    if args.resume:
        print("Loading checkpoint from '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']

    if use_gpu:
        model = nn.DataParallel(model).cuda()

    start_time = time.time()
    train_time = 0
    best_rank1 = -np.inf
    best_epoch = 0
    print("==> Start training")
    cnt_n = 0
    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion_class, criterion_metric, optimizer,
              trainloader, use_gpu)
        train_time += round(time.time() - start_train_time)
        cnt_n = cnt_n + 1

        if args.stepsize > 0: scheduler.step()
        if (cnt_n % 40) == 0:  #### Saving models after each 40 epochs
            print("==> Saving")
            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            is_best = 0
            save_checkpoint(
                {
                    'state_dict':
                    state_dict,  ### rank1 and is_best are kept same as original code. Don't want to mess up the saving
                    'rank1': '###',
                    'epoch': epoch,
                },
                is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))
def main():
    # 判断是否使用gpu
    use_gpu = torch.cuda.is_available()
    # 若指定只使用cpu,则置use_gpu = False
    if args.use_cpu: use_gpu = False
    pin_memory = True if use_gpu else False  # 避免内存浪费

    # 日志打印设置
    # 训练阶段存放在log_train.txt,测试阶段存放在log_test.txt
    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
    else:
        sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
    print("==========\nArgs:{}\n==========".format(args))

    # 若使用gpu,进行相关优化设置
    if use_gpu:
        print("Currently using GPU {}".format(args.gpu_devices))
        os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
        cudnn.benchmark = True
        torch.cuda.manual_seed_all(args.seed)
    else:
        print("Currently using CPU (GPU is highly recommended)")

    dataset = data_manager.init_img_dataset(root=args.root,
                                            name=args.dataset,
                                            split_id=args.split_id)

    # 创建dataloader & 进行 augmentation,训练时进行数据增广,测试时不需要
    # 3个data_loader train query gallery

    # 训练用transform
    transform_train = T.Compose([
        T.Random2DTranslation(args.height, args.width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,
                                                     0.225]),  #归一化
    ])

    # 测试用transform
    transform_test = T.Compose([
        T.Resize((args.height, args.width)),  #只做resize处理,将图像统一到同一尺寸
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    # 导入dataset_loader
    # param@drop_last:把尾部多余数据扔掉,不用做训练了
    trainloader = DataLoader(
        ImageDataset(dataset.train, transform=transform_train),
        sampler=RandomIdentitySampler(dataset.train,
                                      num_instances=args.num_instances),
        batch_size=args.train_batch,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    # param@drop_last:在test阶段,每一个样本都不能丢
    # param@shuffle:在test阶段就不要打乱了
    queryloader = DataLoader(
        ImageDataset(dataset.query, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    galleryloader = DataLoader(
        ImageDataset(dataset.gallery, transform=transform_test),
        batch_size=args.test_batch,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=False,
    )

    # 初始化模型Resnet50
    print("Initializing model: {}".format(args.arch))
    model = models.init_model(name=args.arch,
                              num_classes=dataset.num_train_pids,
                              loss={'softmax', 'metric'},
                              aligned=True,
                              use_gpu=use_gpu)
    print("Model size: {:.5f}M".format(
        sum(p.numel() for p in model.parameters()) / 1000000.0))

    # 确定损失类型
    criterion_class = CrossEntropyLoss(use_gpu=use_gpu)

    # 优化器
    # [email protected]():更新模型的所有参数 若更新某一层:model.conv1 model.fc;若更新两层:nn.Sequential([model.conv1,model.conv2])
    # param@lr:learning rate,学习率
    # param@decay:模型的正则化参数
    optimizer = init_optim(args.optim, model.parameters(), args.lr,
                           args.weight_decay)

    # 学习率衰减,逐步减小步长,采用阶梯型衰减
    # param@gamma:衰减倍率
    if args.stepsize > 0:
        scheduler = lr_scheduler.StepLR(optimizer,
                                        step_size=args.stepsize,
                                        gamma=args.gamma)

    # 设置开始训练的epoch
    start_epoch = args.start_epoch

    # 是否要恢复模型
    if args.resume:
        print("Loading checkpoint from '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint['state_dict'])
        start_epoch = checkpoint['epoch']

    # 是否使用并行
    if use_gpu:
        model = nn.DataParallel(model).cuda()

    # 若是进行测试
    if args.evaluate:
        print("Evaluate only")
        test(model, queryloader, galleryloader, use_gpu)
        return 0

    print('start training')

    # 开始进行训练
    for epoch in range(start_epoch, args.max_epoch):
        start_train_time = time.time()
        train(epoch, model, criterion_class, optimizer, trainloader, use_gpu)
        # save_checkpoint是个字典dic

        train_time += round(time.time() - start_train_time)

        if args.stepsize > 0: scheduler.step()

        if (epoch + 1) > args.start_eval and args.eval_step > 0 and (
                epoch + 1) % args.eval_step == 0 or (epoch +
                                                     1) == args.max_epoch:
            print("==> Test")
            rank1 = test(model, queryloader, galleryloader, use_gpu)
            is_best = rank1 > best_rank1
            if is_best:
                best_rank1 = rank1
                best_epoch = epoch + 1

            if use_gpu:
                state_dict = model.module.state_dict()
            else:
                state_dict = model.state_dict()
            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'rank1': rank1,
                    'epoch': epoch,
                }, is_best,
                osp.join(args.save_dir,
                         'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))

    print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(
        best_rank1, best_epoch))

    elapsed = round(time.time() - start_time)
    elapsed = str(datetime.timedelta(seconds=elapsed))
    train_time = str(datetime.timedelta(seconds=train_time))
    print(
        "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".
        format(elapsed, train_time))