Esempio n. 1
0
    def ice_invoke(self, bytes, current):
        inParams = InputStream(bytes)
        message = inParams.readString()

        print "{0}: {1}".format(current.operation, message)

        out = OutputStream()
        out.writeBool(True)
        outParams = out.finished()

        return True, outParams
    def ice_invoke(self, bytes, current):
        inParams = InputStream(bytes)
        message = inParams.readString()

        print "{0}: {1}".format(current.operation, message)

        out = OutputStream()
        out.writeBool(True)
        outParams = out.finished()

        return True, outParams
Esempio n. 3
0
    def say_things(self):
        operation = "say"
        mode = Ice.OperationMode.Normal
        out = OutputStream()
        out.writeString(self.args[2])
        inParams = out.finished()

        ok, outParams = self.prx.ice_invoke(operation, mode, inParams)
        if ok:
            result = InputStream(outParams).readBool()
            assert result

        else:
            print "There were an error!"
Esempio n. 4
0
    def say_things(self):
        operation = "say"
        mode = Ice.OperationMode.Normal
        out = OutputStream()
        out.writeString(self.args[2])
        inParams = out.finished()

        ok, outParams = self.prx.ice_invoke(operation, mode, inParams)
        if ok:
            result = InputStream(outParams).readBool()
            assert result

        else:
            print "There were an error!"
Esempio n. 5
0
    def __init__(self, expbase, cmdparams=None):
        """cryodata is a CryoData instance. 
        expbase is a path to the base of folder where this experiment's files
        will be stored.  The folder above expbase will also be searched
        for .params files. These will be loaded first."""
        BackgroundWorker.__init__(self)

        # Create a background thread which handles IO
        self.io_queue = Queue()
        self.io_thread = Thread(target=self.ioworker)
        self.io_thread.daemon = True
        self.io_thread.start()

        # General setup ----------------------------------------------------
        self.expbase = expbase
        self.outbase = None

        # Paramter setup ---------------------------------------------------
        # search above expbase for params files
        _,_,filenames = os.walk(opj(expbase,'../')).next()
        self.paramfiles = [opj(opj(expbase,'../'), fname) \
                           for fname in filenames if fname.endswith('.params')]
        # search expbase for params files
        _,_,filenames = os.walk(opj(expbase)).next()
        self.paramfiles += [opj(expbase,fname)  \
                            for fname in filenames if fname.endswith('.params')]
        if 'local.params' in filenames:
            self.paramfiles += [opj(expbase,'local.params')]
        # load parameter files
        self.params = Params(self.paramfiles)
        self.cparams = None
        
        if cmdparams is not None:
            # Set parameter specified on the command line
            for k,v in cmdparams.iteritems():
                self.params[k] = v
                
        # Dataset setup -------------------------------------------------------
        self.imgpath = self.params['inpath']
        psize = self.params['resolution']
        if not isinstance(self.imgpath,list):
            imgstk = MRCImageStack(self.imgpath,psize)
        else:
            imgstk = CombinedImageStack([MRCImageStack(cimgpath,psize) for cimgpath in self.imgpath])

        if self.params.get('float_images',True):
            imgstk.float_images()
        
        self.ctfpath = self.params['ctfpath']
        mscope_params = self.params['microscope_params']
         
        if not isinstance(self.ctfpath,list):
            ctfstk = CTFStack(self.ctfpath,mscope_params)
        else:
            ctfstk = CombinedCTFStack([CTFStack(cctfpath,mscope_params) for cctfpath in self.ctfpath])


        self.cryodata = CryoDataset(imgstk,ctfstk)
        self.cryodata.compute_noise_statistics()
        if self.params.get('window_images',True):
            imgstk.window_images()
        minibatch_size = self.params['minisize']
        testset_size = self.params['test_imgs']
        partition = self.params.get('partition',0)
        num_partitions = self.params.get('num_partitions',1)
        seed = self.params['random_seed']
        if isinstance(partition,str):
            partition = eval(partition)
        if isinstance(num_partitions,str):
            num_partitions = eval(num_partitions)
        if isinstance(seed,str):
            seed = eval(seed)
        self.cryodata.divide_dataset(minibatch_size,testset_size,partition,num_partitions,seed)
        
        self.cryodata.set_datasign(self.params.get('datasign','auto'))
        if self.params.get('normalize_data',True):
            self.cryodata.normalize_dataset()

        self.voxel_size = self.cryodata.pixel_size


        # Iterations setup -------------------------------------------------
        self.iteration = 0 
        self.tic_epoch = None
        self.num_data_evals = 0
        self.eval_params()

        outdir = self.cparams.get('outdir',None)
        if outdir is None:
            if self.cparams.get('num_partitions',1) > 1:
                outdir = 'partition{0}'.format(self.cparams['partition'])
            else:
                outdir = ''
        self.outbase = opj(self.expbase,outdir)
        if not os.path.isdir(self.outbase):
            os.makedirs(self.outbase) 

        # Output setup -----------------------------------------------------
        self.ostream = OutputStream(opj(self.outbase,'stdout'))

        self.ostream(80*"=")
        self.ostream("Experiment: " + expbase + \
                     "    Kernel: " + self.params['kernel'])
        self.ostream("Started on " + socket.gethostname() + \
                     "    At: " + time.strftime('%B %d %Y: %I:%M:%S %p'))
        self.ostream("Git SHA1: " + gitutil.git_get_SHA1())
        self.ostream(80*"=")
        gitutil.git_info_dump(opj(self.outbase, 'gitinfo'))
        self.startdatetime = datetime.now()


        # for diagnostics and parameters
        self.diagout = Output(opj(self.outbase, 'diag'),runningout=False)
        # for stats (per image etc)
        self.statout = Output(opj(self.outbase, 'stat'),runningout=True)
        # for likelihoods of individual images
        self.likeout = Output(opj(self.outbase, 'like'),runningout=False)

        self.img_likes = n.empty(self.cryodata.N_D)
        self.img_likes[:] = n.inf

        # optimization state vars ------------------------------------------
        init_model = self.cparams.get('init_model',None)
        if init_model is not None:
            filename = init_model
            if filename.upper().endswith('.MRC'):
                M = readMRC(filename)
            else:
                with open(filename) as fp:
                    M = cPickle.load(fp)
                    if type(M)==list:
                        M = M[-1]['M'] 
            if M.shape != 3*(self.cryodata.N,):
                M = cryoem.resize_ndarray(M,3*(self.cryodata.N,),axes=(0,1,2))
        else:
            init_seed = self.cparams.get('init_random_seed',0)  + self.cparams.get('partition',0)
            print "Randomly generating initial density (init_random_seed = {0})...".format(init_seed), ; sys.stdout.flush()
            tic = time.time()
            M = cryoem.generate_phantom_density(self.cryodata.N, 0.95*self.cryodata.N/2.0, \
                                                5*self.cryodata.N/128.0, 30, seed=init_seed)
            print "done in {0}s".format(time.time() - tic)

        tic = time.time()
        print "Windowing and aligning initial density...", ; sys.stdout.flush()
        # window the initial density
        wfunc = self.cparams.get('init_window','circle')
        cryoem.window(M,wfunc)

        # Center and orient the initial density
        cryoem.align_density(M)
        print "done in {0:.2f}s".format(time.time() - tic)

        # apply the symmetry operator
        init_sym = get_symmetryop(self.cparams.get('init_symmetry',self.cparams.get('symmetry',None)))
        if init_sym is not None:
            tic = time.time()
            print "Applying symmetry operator...", ; sys.stdout.flush()
            M = init_sym.apply(M)
            print "done in {0:.2f}s".format(time.time() - tic)

        tic = time.time()
        print "Scaling initial model...", ; sys.stdout.flush()
        modelscale = self.cparams.get('modelscale','auto')
        mleDC, _, mleDC_est_std = self.cryodata.get_dc_estimate()
        if modelscale == 'auto':
            # Err on the side of a weaker prior by using a larger value for modelscale
            modelscale = (n.abs(mleDC) + 2*mleDC_est_std)/self.cryodata.N
            print "estimated modelscale = {0:.3g}...".format(modelscale), ; sys.stdout.flush()
            self.params['modelscale'] = modelscale
            self.cparams['modelscale'] = modelscale
        M *= modelscale/M.sum()
        print "done in {0:.2f}s".format(time.time() - tic)
        if mleDC_est_std/n.abs(mleDC) > 0.05:
            print "  WARNING: the DC component estimate has a high relative variance, it may be inaccurate!"
        if ((modelscale*self.cryodata.N - n.abs(mleDC)) / mleDC_est_std) > 3:
            print "  WARNING: the selected modelscale value is more than 3 std devs different than the estimated one.  Be sure this is correct."

        self.M = n.require(M,dtype=density.real_t)
        self.fM = density.real_to_fspace(M)
        self.dM = density.zeros_like(self.M)

        self.step = eval(self.cparams['optim_algo'])
        self.step.setup(self.cparams, self.diagout, self.statout, self.ostream)

        # Objective function setup --------------------------------------------
        param_type = self.cparams.get('parameterization','real')
        cplx_param = param_type in ['complex','complex_coeff','complex_herm_coeff']
        self.like_func = eval_objective(self.cparams['likelihood'])
        self.prior_func = eval_objective(self.cparams['prior'])

        if self.cparams.get('penalty',None) is not None:
            self.penalty_func = eval_objective(self.cparams['penalty'])
            prior_func = SumObjectives(self.prior_func.fspace, \
                                       [self.penalty_func,self.prior_func], None)
        else:
            prior_func = self.prior_func

        self.obj = SumObjectives(cplx_param,
                                 [self.like_func,prior_func], [None,None])
        self.obj.setup(self.cparams, self.diagout, self.statout, self.ostream)
        self.obj.set_dataset(self.cryodata)
        self.obj_wrapper = ObjectiveWrapper(param_type)

        self.last_save = time.time()
        
        self.logpost_history = FiniteRunningSum()
        self.like_history = FiniteRunningSum()

        # Importance Samplers -------------------------------------------------
        self.is_sym = get_symmetryop(self.cparams.get('is_symmetry',self.cparams.get('symmetry',None)))
        self.sampler_R = FixedFisherImportanceSampler('_R',self.is_sym)
        self.sampler_I = FixedFisherImportanceSampler('_I')
        self.sampler_S = FixedGaussianImportanceSampler('_S')
        self.like_func.set_samplers(sampler_R=self.sampler_R,sampler_I=self.sampler_I,sampler_S=self.sampler_S)
Esempio n. 6
0
def sagd_dostep(data_dir, model_file, use_angular_correlation=True):
    cryodata, (M, fM), cparams = sagd_init(data_dir, model_file,
                                           use_angular_correlation)

    iteration = cparams['iteration']

    sagd_params = {
        'iteration': iteration,
        'exp_path': 'exp/',

        'num_batches': cryodata.N_batches,

        'sagd_linesearch':          'max_frequency_changed or ((iteration%5 == 0) if iteration < 2500 else \
                                                            (iteration%3 == 0) if iteration < 5000 else \
                                                            True)'                                                                  ,
        'sagd_linesearch_accuracy': 1.01 if iteration < 10 else \
                                    1.10 if iteration < 2500 else \
                                    1.25 if iteration < 5000 else \
                                    1.50,
        'sagd_linesearch_maxits':   5 if iteration < 2500 else 3,
        'sagd_incL':                1.0,

        'sagd_momentum':      1 - 1.0/(1.0 + 0.1 * iteration),
        # 'sagd_learnrate':     '1.0/min(16.0,2**(num_max_frequency_changes))',

        'shuffle_minibatches': 'iteration >= 1000',
    }

    # initial logging
    if os.path.exists('exp/sagd_L0.pkl'):
        os.remove('exp/sagd_L0.pkl')
    # for diagnostics and parameters, # for stats (per image etc), # for likelihoods of individual images
    diagout = Output(os.path.join('exp', 'diag'), runningout=False)
    statout = Output(os.path.join('exp', 'stat'), runningout=True)
    likeout = Output(os.path.join('exp', 'like'), runningout=False)
    ostream = OutputStream(None)

    # Setup SAGD optimizer
    step = SAGDStep()
    step.setup(cparams, diagout, statout, ostream)

    # Objective function setup
    param_type = cparams.get('parameterization', 'real')
    cplx_param = param_type in [
        'complex', 'complex_coeff', 'complex_herm_coeff'
    ]
    like_func = eval_objective(cparams['likelihood'])
    prior_func = eval_objective(cparams['prior'])

    obj = SumObjectives(cplx_param, [like_func, prior_func], [None, None])
    obj.setup(cparams, diagout, statout, ostream)
    obj.set_dataset(cryodata)
    obj_wrapper = ObjectiveWrapper(param_type)

    is_sym = get_symmetryop(
        cparams.get('is_symmetry', cparams.get('symmetry', None)))
    sampler_R = FixedFisherImportanceSampler('_R', is_sym)
    sampler_I = FixedFisherImportanceSampler('_I')
    # sampler_S = FixedGaussianImportanceSampler('_S')
    sampler_S = None
    like_func.set_samplers(sampler_R=sampler_R,
                           sampler_I=sampler_I,
                           sampler_S=sampler_S)

    # Start iteration
    num_data_evals = 0
    num_iterations = 10
    for i in range(num_iterations):
        cparams['iteration'] = i
        sagd_params['iteration'] = i
        print('Iteration #:', i)
        minibatch = cryodata.get_next_minibatch(True)
        num_data_evals += minibatch['N_M']

        # setup the wrapper for the objective function
        obj.set_data(cparams, minibatch)
        obj_wrapper.set_objective(obj)
        x0 = obj_wrapper.set_density(M, fM)
        evalobj = obj_wrapper.eval_obj

        # Get step size
        trainLogP, dlogP, v, res_train, extra_num_data = \
            step.do_step(x0, sagd_params, cryodata, evalobj, batch=minibatch)

        # print('trainLogP:', trainLogP)
        # print('dlogP:', dlogP.shape)
        # print('v:', v.shape)
        # print('res_train:', res_train.keys())  # dict_keys(['CV2_R', 'CV2_I', 'Evar_like', 'Evar_prior', 'sigma2_est', 'correlation', 'power', 'like', 'N_R_sampled', 'N_I_sampled', 'N_Total_sampled', 'totallike_logscale', 'kern_timing', 'angular_correlation_timing', 'like_timing', 'N_R', 'N_I', 'N_Total', 'N_R_sampled_total', 'N_I_sampled_total', 'N_Total_sampled_total', 'L', 'all_logPs', 'all_dlogPs'])
        # print('res_train L:', res_train['L'])
        # print('res_train like:', res_train['like'])
        # print('extra_num_data:', extra_num_data)

        # Apply the step
        x = x0 + v

        # Convert from parameters to value
        prevM = np.copy(M)
        M, fM = obj_wrapper.convert_parameter(x, comp_real=True)

        # Compute net change
        dM = prevM - M

        # Compute step statistics
        step_size = np.linalg.norm(dM)
        grad_size = np.linalg.norm(dlogP)
        M_norm = np.linalg.norm(M)

        num_data_evals += extra_num_data
        inc_ratio = step_size / M_norm

        # Update import sampling distributions
        sampler_R.perform_update()
        sampler_I.perform_update()