def ice_invoke(self, bytes, current): inParams = InputStream(bytes) message = inParams.readString() print "{0}: {1}".format(current.operation, message) out = OutputStream() out.writeBool(True) outParams = out.finished() return True, outParams
def say_things(self): operation = "say" mode = Ice.OperationMode.Normal out = OutputStream() out.writeString(self.args[2]) inParams = out.finished() ok, outParams = self.prx.ice_invoke(operation, mode, inParams) if ok: result = InputStream(outParams).readBool() assert result else: print "There were an error!"
def __init__(self, expbase, cmdparams=None): """cryodata is a CryoData instance. expbase is a path to the base of folder where this experiment's files will be stored. The folder above expbase will also be searched for .params files. These will be loaded first.""" BackgroundWorker.__init__(self) # Create a background thread which handles IO self.io_queue = Queue() self.io_thread = Thread(target=self.ioworker) self.io_thread.daemon = True self.io_thread.start() # General setup ---------------------------------------------------- self.expbase = expbase self.outbase = None # Paramter setup --------------------------------------------------- # search above expbase for params files _,_,filenames = os.walk(opj(expbase,'../')).next() self.paramfiles = [opj(opj(expbase,'../'), fname) \ for fname in filenames if fname.endswith('.params')] # search expbase for params files _,_,filenames = os.walk(opj(expbase)).next() self.paramfiles += [opj(expbase,fname) \ for fname in filenames if fname.endswith('.params')] if 'local.params' in filenames: self.paramfiles += [opj(expbase,'local.params')] # load parameter files self.params = Params(self.paramfiles) self.cparams = None if cmdparams is not None: # Set parameter specified on the command line for k,v in cmdparams.iteritems(): self.params[k] = v # Dataset setup ------------------------------------------------------- self.imgpath = self.params['inpath'] psize = self.params['resolution'] if not isinstance(self.imgpath,list): imgstk = MRCImageStack(self.imgpath,psize) else: imgstk = CombinedImageStack([MRCImageStack(cimgpath,psize) for cimgpath in self.imgpath]) if self.params.get('float_images',True): imgstk.float_images() self.ctfpath = self.params['ctfpath'] mscope_params = self.params['microscope_params'] if not isinstance(self.ctfpath,list): ctfstk = CTFStack(self.ctfpath,mscope_params) else: ctfstk = CombinedCTFStack([CTFStack(cctfpath,mscope_params) for cctfpath in self.ctfpath]) self.cryodata = CryoDataset(imgstk,ctfstk) self.cryodata.compute_noise_statistics() if self.params.get('window_images',True): imgstk.window_images() minibatch_size = self.params['minisize'] testset_size = self.params['test_imgs'] partition = self.params.get('partition',0) num_partitions = self.params.get('num_partitions',1) seed = self.params['random_seed'] if isinstance(partition,str): partition = eval(partition) if isinstance(num_partitions,str): num_partitions = eval(num_partitions) if isinstance(seed,str): seed = eval(seed) self.cryodata.divide_dataset(minibatch_size,testset_size,partition,num_partitions,seed) self.cryodata.set_datasign(self.params.get('datasign','auto')) if self.params.get('normalize_data',True): self.cryodata.normalize_dataset() self.voxel_size = self.cryodata.pixel_size # Iterations setup ------------------------------------------------- self.iteration = 0 self.tic_epoch = None self.num_data_evals = 0 self.eval_params() outdir = self.cparams.get('outdir',None) if outdir is None: if self.cparams.get('num_partitions',1) > 1: outdir = 'partition{0}'.format(self.cparams['partition']) else: outdir = '' self.outbase = opj(self.expbase,outdir) if not os.path.isdir(self.outbase): os.makedirs(self.outbase) # Output setup ----------------------------------------------------- self.ostream = OutputStream(opj(self.outbase,'stdout')) self.ostream(80*"=") self.ostream("Experiment: " + expbase + \ " Kernel: " + self.params['kernel']) self.ostream("Started on " + socket.gethostname() + \ " At: " + time.strftime('%B %d %Y: %I:%M:%S %p')) self.ostream("Git SHA1: " + gitutil.git_get_SHA1()) self.ostream(80*"=") gitutil.git_info_dump(opj(self.outbase, 'gitinfo')) self.startdatetime = datetime.now() # for diagnostics and parameters self.diagout = Output(opj(self.outbase, 'diag'),runningout=False) # for stats (per image etc) self.statout = Output(opj(self.outbase, 'stat'),runningout=True) # for likelihoods of individual images self.likeout = Output(opj(self.outbase, 'like'),runningout=False) self.img_likes = n.empty(self.cryodata.N_D) self.img_likes[:] = n.inf # optimization state vars ------------------------------------------ init_model = self.cparams.get('init_model',None) if init_model is not None: filename = init_model if filename.upper().endswith('.MRC'): M = readMRC(filename) else: with open(filename) as fp: M = cPickle.load(fp) if type(M)==list: M = M[-1]['M'] if M.shape != 3*(self.cryodata.N,): M = cryoem.resize_ndarray(M,3*(self.cryodata.N,),axes=(0,1,2)) else: init_seed = self.cparams.get('init_random_seed',0) + self.cparams.get('partition',0) print "Randomly generating initial density (init_random_seed = {0})...".format(init_seed), ; sys.stdout.flush() tic = time.time() M = cryoem.generate_phantom_density(self.cryodata.N, 0.95*self.cryodata.N/2.0, \ 5*self.cryodata.N/128.0, 30, seed=init_seed) print "done in {0}s".format(time.time() - tic) tic = time.time() print "Windowing and aligning initial density...", ; sys.stdout.flush() # window the initial density wfunc = self.cparams.get('init_window','circle') cryoem.window(M,wfunc) # Center and orient the initial density cryoem.align_density(M) print "done in {0:.2f}s".format(time.time() - tic) # apply the symmetry operator init_sym = get_symmetryop(self.cparams.get('init_symmetry',self.cparams.get('symmetry',None))) if init_sym is not None: tic = time.time() print "Applying symmetry operator...", ; sys.stdout.flush() M = init_sym.apply(M) print "done in {0:.2f}s".format(time.time() - tic) tic = time.time() print "Scaling initial model...", ; sys.stdout.flush() modelscale = self.cparams.get('modelscale','auto') mleDC, _, mleDC_est_std = self.cryodata.get_dc_estimate() if modelscale == 'auto': # Err on the side of a weaker prior by using a larger value for modelscale modelscale = (n.abs(mleDC) + 2*mleDC_est_std)/self.cryodata.N print "estimated modelscale = {0:.3g}...".format(modelscale), ; sys.stdout.flush() self.params['modelscale'] = modelscale self.cparams['modelscale'] = modelscale M *= modelscale/M.sum() print "done in {0:.2f}s".format(time.time() - tic) if mleDC_est_std/n.abs(mleDC) > 0.05: print " WARNING: the DC component estimate has a high relative variance, it may be inaccurate!" if ((modelscale*self.cryodata.N - n.abs(mleDC)) / mleDC_est_std) > 3: print " WARNING: the selected modelscale value is more than 3 std devs different than the estimated one. Be sure this is correct." self.M = n.require(M,dtype=density.real_t) self.fM = density.real_to_fspace(M) self.dM = density.zeros_like(self.M) self.step = eval(self.cparams['optim_algo']) self.step.setup(self.cparams, self.diagout, self.statout, self.ostream) # Objective function setup -------------------------------------------- param_type = self.cparams.get('parameterization','real') cplx_param = param_type in ['complex','complex_coeff','complex_herm_coeff'] self.like_func = eval_objective(self.cparams['likelihood']) self.prior_func = eval_objective(self.cparams['prior']) if self.cparams.get('penalty',None) is not None: self.penalty_func = eval_objective(self.cparams['penalty']) prior_func = SumObjectives(self.prior_func.fspace, \ [self.penalty_func,self.prior_func], None) else: prior_func = self.prior_func self.obj = SumObjectives(cplx_param, [self.like_func,prior_func], [None,None]) self.obj.setup(self.cparams, self.diagout, self.statout, self.ostream) self.obj.set_dataset(self.cryodata) self.obj_wrapper = ObjectiveWrapper(param_type) self.last_save = time.time() self.logpost_history = FiniteRunningSum() self.like_history = FiniteRunningSum() # Importance Samplers ------------------------------------------------- self.is_sym = get_symmetryop(self.cparams.get('is_symmetry',self.cparams.get('symmetry',None))) self.sampler_R = FixedFisherImportanceSampler('_R',self.is_sym) self.sampler_I = FixedFisherImportanceSampler('_I') self.sampler_S = FixedGaussianImportanceSampler('_S') self.like_func.set_samplers(sampler_R=self.sampler_R,sampler_I=self.sampler_I,sampler_S=self.sampler_S)
def sagd_dostep(data_dir, model_file, use_angular_correlation=True): cryodata, (M, fM), cparams = sagd_init(data_dir, model_file, use_angular_correlation) iteration = cparams['iteration'] sagd_params = { 'iteration': iteration, 'exp_path': 'exp/', 'num_batches': cryodata.N_batches, 'sagd_linesearch': 'max_frequency_changed or ((iteration%5 == 0) if iteration < 2500 else \ (iteration%3 == 0) if iteration < 5000 else \ True)' , 'sagd_linesearch_accuracy': 1.01 if iteration < 10 else \ 1.10 if iteration < 2500 else \ 1.25 if iteration < 5000 else \ 1.50, 'sagd_linesearch_maxits': 5 if iteration < 2500 else 3, 'sagd_incL': 1.0, 'sagd_momentum': 1 - 1.0/(1.0 + 0.1 * iteration), # 'sagd_learnrate': '1.0/min(16.0,2**(num_max_frequency_changes))', 'shuffle_minibatches': 'iteration >= 1000', } # initial logging if os.path.exists('exp/sagd_L0.pkl'): os.remove('exp/sagd_L0.pkl') # for diagnostics and parameters, # for stats (per image etc), # for likelihoods of individual images diagout = Output(os.path.join('exp', 'diag'), runningout=False) statout = Output(os.path.join('exp', 'stat'), runningout=True) likeout = Output(os.path.join('exp', 'like'), runningout=False) ostream = OutputStream(None) # Setup SAGD optimizer step = SAGDStep() step.setup(cparams, diagout, statout, ostream) # Objective function setup param_type = cparams.get('parameterization', 'real') cplx_param = param_type in [ 'complex', 'complex_coeff', 'complex_herm_coeff' ] like_func = eval_objective(cparams['likelihood']) prior_func = eval_objective(cparams['prior']) obj = SumObjectives(cplx_param, [like_func, prior_func], [None, None]) obj.setup(cparams, diagout, statout, ostream) obj.set_dataset(cryodata) obj_wrapper = ObjectiveWrapper(param_type) is_sym = get_symmetryop( cparams.get('is_symmetry', cparams.get('symmetry', None))) sampler_R = FixedFisherImportanceSampler('_R', is_sym) sampler_I = FixedFisherImportanceSampler('_I') # sampler_S = FixedGaussianImportanceSampler('_S') sampler_S = None like_func.set_samplers(sampler_R=sampler_R, sampler_I=sampler_I, sampler_S=sampler_S) # Start iteration num_data_evals = 0 num_iterations = 10 for i in range(num_iterations): cparams['iteration'] = i sagd_params['iteration'] = i print('Iteration #:', i) minibatch = cryodata.get_next_minibatch(True) num_data_evals += minibatch['N_M'] # setup the wrapper for the objective function obj.set_data(cparams, minibatch) obj_wrapper.set_objective(obj) x0 = obj_wrapper.set_density(M, fM) evalobj = obj_wrapper.eval_obj # Get step size trainLogP, dlogP, v, res_train, extra_num_data = \ step.do_step(x0, sagd_params, cryodata, evalobj, batch=minibatch) # print('trainLogP:', trainLogP) # print('dlogP:', dlogP.shape) # print('v:', v.shape) # print('res_train:', res_train.keys()) # dict_keys(['CV2_R', 'CV2_I', 'Evar_like', 'Evar_prior', 'sigma2_est', 'correlation', 'power', 'like', 'N_R_sampled', 'N_I_sampled', 'N_Total_sampled', 'totallike_logscale', 'kern_timing', 'angular_correlation_timing', 'like_timing', 'N_R', 'N_I', 'N_Total', 'N_R_sampled_total', 'N_I_sampled_total', 'N_Total_sampled_total', 'L', 'all_logPs', 'all_dlogPs']) # print('res_train L:', res_train['L']) # print('res_train like:', res_train['like']) # print('extra_num_data:', extra_num_data) # Apply the step x = x0 + v # Convert from parameters to value prevM = np.copy(M) M, fM = obj_wrapper.convert_parameter(x, comp_real=True) # Compute net change dM = prevM - M # Compute step statistics step_size = np.linalg.norm(dM) grad_size = np.linalg.norm(dlogP) M_norm = np.linalg.norm(M) num_data_evals += extra_num_data inc_ratio = step_size / M_norm # Update import sampling distributions sampler_R.perform_update() sampler_I.perform_update()