Esempio n. 1
0
def upload_tweet_sentiment():
    print('Process started, it can take several time. Follow updates through ' \
          'the log...')
    dbm_local = DBManager(collection='tweets_esp_hpai')
    dbm_remote = DBManager(collection='bsc-ls',
                           config_fn='config_mongo_hpai.json')
    query = {'$and': [{'lang': {'$in': SPAIN_LANGUAGES}},
                      {'$or': [{'place.country': 'Spain'},
                               {'user.location': {'$in': \
                                   get_spain_places_regex()}}]}]}
    query.update({'retweeted_status': {'$exists': 0}})
    query.update({'sentiment_score': {'$exists': 1}})
    tweets = dbm_local.search(query)
    total_tweets = tweets.count()
    processing_counter = total_segs = modified_records = found_tweets = 0
    logging.info('Going to upload {0:,} tweets'.format(total_tweets))
    for tweet in tweets:
        start_time = time.time()
        processing_counter += 1
        logging.info('[{0}/{1}] Processing tweet:\n{2}'.\
                     format(processing_counter, total_tweets, tweet['id']))
        sentiment_dict = {
            'sentiment': {
                'score':
                tweet['sentiment_score']
                if tweet['sentiment_score_polyglot'] else None,
            }
        }
        if tweet['sentiment_score_polyglot']:
            sentiment_dict['sentiment']['raw_score_polyglot'] = \
                tweet['sentiment_score_polyglot']
        if 'sentiment_score_sentipy' in tweet:
            sentiment_dict['sentiment']['raw_score_sentipy'] = \
                tweet['sentiment_score_sentipy']
        if 'sentiment_score_affin' in tweet:
            sentiment_dict['sentiment']['raw_score_affin'] = \
                tweet['sentiment_score_affin']
        ret_update = dbm_remote.update_record({'id': int(tweet['id'])},
                                              sentiment_dict)
        if ret_update.matched_count == 0:
            logging.info('Could not find in the remote server a tweet with ' \
                         'the id {}'.format(tweet['id']))
        elif ret_update.matched_count == 1:
            found_tweets += 1
            if ret_update.modified_count == 0:
                logging.info('Found tweet but did not update.')
            elif ret_update.modified_count == 1:
                modified_records += 1
                logging.info('Remote tweet update with sentiment info!')
        total_segs += calculate_remaining_execution_time(
            start_time, total_segs, processing_counter, total_tweets)
    logging.info('Total processed tweets: {0:,}\n'\
                 'Total found tweets in remote server: {1:,}\n'
                 'Total updated tweets in remote server: {2:,}\n'.\
                 format(total_tweets, found_tweets, modified_records))
    print('Process finished!')
Esempio n. 2
0
class NetworkAnalyzer:
    __dbm_tweets = None
    __dbm_users = None
    __dbm_networks = None
    __network = None
    __graph = None
    __nodes = set()
    __unknown_users = set()
    __node_sizes = None

    def __init__(self, colletion=None):
        if not None:
            self.__dbm_tweets = DBManager(colletion)
        self.__dbm_users = DBManager('users')
        self.__dbm_networks = DBManager('networks')
        self.__network = []

    def __computer_ff_ratio(self, friends, followers):
        if followers > 0 and friends > 0:
            return friends / followers
        else:
            return 0

    # Get interactions in of a given users
    def get_in_interactions(self, user_screen_name):
        # compute in interactions, meaning, interactions in which the user
        # was mentioned, retweeted, quoted, replied
        in_inter_query = {
            'interactions.' + user_screen_name: {
                '$exists': 1
            },
            'screen_name': {
                '$ne': user_screen_name
            }
        }
        n_users = self.__dbm_users.search(in_inter_query)
        in_interactions_dict, in_rts, in_rps = {}, {}, {}
        in_qts, in_mts = {}, {}
        total_in_interactions = 0
        total_in_retweets, total_in_replies = 0, 0
        total_in_mentions, total_in_quotes = 0, 0
        for n_user in n_users:
            n_user_interactions = n_user['interactions']
            for i_user, interactions in n_user_interactions.items():
                if i_user == user_screen_name:
                    in_interactions_dict[
                        n_user['screen_name']] = interactions['total']
                    total_in_interactions += interactions['total']
                    if 'retweets' in interactions.keys():
                        total_in_retweets += interactions['retweets']
                        in_rts[
                            n_user['screen_name']] = interactions['retweets']
                    if 'replies' in interactions.keys():
                        total_in_replies += interactions['replies']
                        in_rps[n_user['screen_name']] = interactions['replies']
                    if 'mentions' in interactions.keys():
                        total_in_mentions += interactions['mentions']
                        in_mts[
                            n_user['screen_name']] = interactions['mentions']
                    if 'quotes' in interactions.keys():
                        total_in_quotes += interactions['quotes']
                        in_qts[n_user['screen_name']] = interactions['quotes']
        in_interactions_obj = {
            'total': {
                'count': total_in_interactions,
                'details': in_interactions_dict
            },
            'replies': {
                'count': total_in_replies,
                'details': in_rps
            },
            'retweets': {
                'count': total_in_retweets,
                'details': in_rts
            },
            'mentions': {
                'count': total_in_mentions,
                'details': in_mts
            },
            'quotes': {
                'count': total_in_quotes,
                'details': in_qts
            }
        }
        user_dict = {'in_interactions': in_interactions_obj}
        return user_dict

    # Get interactions out of a given users
    def get_out_interactions(self, user_screen_name):
        user = self.__dbm_users.search({'screen_name': user_screen_name})[0]
        # compute out interactions, meaning, interactions originated by
        # the user
        user_interactions = user['interactions']
        out_interactions_dict, out_rts = {}, {}
        out_rps, out_qts, out_mts = {}, {}, {}
        total_out_interactions, total_out_retweets = 0, 0
        total_out_mentions, total_out_replies = 0, 0
        total_out_quotes = 0
        for recipient, interactions in user_interactions.items():
            out_interactions_dict[recipient] = interactions['total']
            total_out_interactions += interactions['total']
            if 'retweets' in interactions:
                total_out_retweets += interactions['retweets']
                out_rts[recipient] = interactions['retweets']
            if 'replies' in interactions:
                total_out_replies += interactions['replies']
                out_rps[recipient] = interactions['replies']
            if 'mentions' in interactions:
                total_out_mentions += interactions['mentions']
                out_mts[recipient] = interactions['mentions']
            if 'quotes' in interactions:
                total_out_quotes += interactions['quotes']
                out_qts[recipient] = interactions['quotes']
        out_interactions_obj = {
            'total': {
                'count': total_out_interactions,
                'details': out_interactions_dict
            },
            'replies': {
                'count': total_out_replies,
                'details': out_rps
            },
            'retweets': {
                'count': total_out_retweets,
                'details': out_rts
            },
            'mentions': {
                'count': total_out_mentions,
                'details': out_mts
            },
            'quotes': {
                'count': total_out_quotes,
                'details': out_qts
            }
        }
        # compile all information in a dictionary
        user_dict = {'out_interactions': out_interactions_obj}
        return user_dict

    def create_users_db(self, clear_collection=False):
        logging.info(
            '::. Network Analyzer: Creating database of users, it can take several minutes, please wait_'
        )
        if clear_collection:
            self.__dbm_users.clear_collection()
        users = self.__dbm_tweets.get_unique_users()
        users_count = len(users)
        logging.info(
            '::. Network Analyzer: Extracted {0} unique users from the database...'
            .format(users_count))
        progress = 1
        for user in users:
            db_user = {
                'screen_name':
                user['screen_name'],
                'friends':
                user['friends'],
                'followers':
                user['followers'],
                'ff_ratio':
                self.__computer_ff_ratio(user['friends'], user['followers']),
                'interactions':
                user['interactions'],
                'tweets':
                user['tweets_count'],
                'original_tweets':
                user['original_count'],
                'rts':
                user['retweets_count'],
                'qts':
                user['quotes_count'],
                'rps':
                user['replies_count'],
                'verified':
                user['verified']
            }
            filter_query = {'screen_name': user['screen_name']}
            logging.debug(
                '::. Network Analyzer: Updating/creating user {0} ({1}/{2})...'
                .format(user['screen_name'], progress, users_count))
            progress += 1
            self.__dbm_users.update_record(filter_query,
                                           db_user,
                                           create_if_doesnt_exist=True)

    def generate_network(self,
                         subnet_query={},
                         depth=1,
                         file_name='network',
                         override_net=False):
        net_query = subnet_query.copy()
        net_query.update({'depth': depth})
        ret_net = self.__dbm_networks.search(net_query)
        # the net doesn't exist yet, let's create it
        if ret_net.count() == 0 or override_net:
            logging.info(
                'Generating the network, it can take several minutes, please wait_'
            )
            users = self.__dbm_users.search(subnet_query)
            # for each user generate his/her edges
            for user in users:
                if 'ff_ratio' in user.keys():
                    u_ff_ratio = user['ff_ratio']
                else:
                    u_ff_ratio = self.__computer_ff_ratio(
                        user['friends'], user['followers'])
                exists = user['exists'] if 'exists' in user.keys() else ''
                self.__nodes.add(
                    tuple({
                        'screen_name': user['screen_name'],
                        'ff_ratio': u_ff_ratio,
                        'exists': exists
                    }.items()))
                for interacted_user, interactions in user[
                        'interactions'].items():
                    iuser = self.__dbm_users.find_record(
                        {'screen_name': interacted_user})
                    if not iuser:
                        if depth > 1:
                            iuser_ffratio = self.__get_ffratio(interacted_user)
                            if not iuser_ffratio:
                                self.__unknown_users.add(interacted_user)
                                continue
                        else:
                            self.__unknown_users.add(interacted_user)
                            continue
                    else:
                        if 'ff_ratio' in iuser.keys():
                            i_ff_ratio = iuser['ff_ratio']
                        else:
                            i_ff_ratio = self.__computer_ff_ratio(
                                iuser['friends'], iuser['followers'])
                    exists_iuser = iuser['exists'] if 'exists' in iuser.keys(
                    ) else ''

                    self.__nodes.add(
                        tuple({
                            'screen_name': iuser['screen_name'],
                            'ff_ratio': i_ff_ratio
                        }.items()))
                    edge = {
                        'nodeA': {
                            'screen_name': user['screen_name'],
                            'ff_ratio': u_ff_ratio,
                            'exists': exists
                        },
                        'nodeB': {
                            'screen_name': interacted_user,
                            'ff_ratio': i_ff_ratio,
                            'exists': exists_iuser
                        },
                        'weight': interactions['total']
                    }
                    self.__network.append(edge)
            logging.info('Created a network of {0} nodes and {1} edges'.format(
                len(self.__nodes), len(self.__network)))
            logging.info('Unknown users {0}'.format(len(self.__unknown_users)))
            # save the net in a gefx file for posterior usage
            f_name = self.save_network_in_gexf_format(file_name)
            logging.info('Saved the network in the file {0}'.format(f_name))
            db_net = {'file_name': str(f_name)}
            db_net.update(net_query)
            self.__dbm_networks.save_record(db_net)
        else:
            f_net = ret_net[0]
            logging.info(
                'The network was already generated, please find it at {0}'.
                format(f_net['file_name']))

    def create_graph(self):
        logging.info('Creating the graph, please wait_')
        self.__graph = net.DiGraph()
        ff_ratio = defaultdict(lambda: 0.0)
        # create a directed graph from the edge data and populate a dictionary
        # with the friends/followers ratio
        for edge in self.__network:
            user = edge['nodeA']['screen_name']
            interacted_with = edge['nodeB']['screen_name']
            num_interactions = edge['weight']
            u_ff_ratio = edge['nodeA']['ff_ratio']
            self.__graph.add_edge(user,
                                  interacted_with,
                                  weight=int(num_interactions))
            ff_ratio[user] = float(u_ff_ratio)
        # obtain central node
        # degrees = net.degree(self.__graph)
        # central_node, max_degree = sorted(degrees, key=itemgetter(1))[-1]
        # center the graph around the central node
        # ego_graph = net.DiGraph(net.ego_graph(self.__graph, central_node))
        return

    def get_graph_nodes(self):
        return len(self.__nodes)

    def get_graph_edges(self):
        return len(self.__network)

    def get_graph(self):
        return self.__graph

    def get_node_sizes(self):
        return self.__node_sizes

    def __get_ffratio(self, screen_name):
        query = {
            '$or': [{
                'user.screen_name': screen_name
            }, {
                'retweeted_status.user.screen_name': screen_name
            }, {
                'quoted_status.user.screen_name': screen_name
            }]
        }
        tweet_obj = self.__dbm_tweets.find_record(query)
        if tweet_obj:
            tweet = tweet_obj['tweet_obj']
            if 'retweeted_status' in tweet.keys():
                return self.__computer_ff_ratio(
                    tweet['retweeted_status']['user']['friends_count'],
                    tweet['retweeted_status']['user']['followers_count'])
            elif 'quoted_status' in tweet.keys():
                return self.__computer_ff_ratio(
                    tweet['quoted_status']['user']['friends_count'],
                    tweet['quoted_status']['user']['followers_count'])
            else:
                return self.__computer_ff_ratio(
                    tweet['user']['friends_count'],
                    tweet['user']['followers_count'])
        else:
            return None

    def save_network_in_gexf_format(self, file_name):
        today = datetime.strftime(datetime.now(), '%m/%d/%y')
        f_name = pathlib.Path(__file__).parents[1].joinpath(
            'sna', 'gefx', file_name + '_' + today + '.gexf')

        with open(str(f_name), 'w', encoding='utf-8') as f:
            f.write('<?xml version="1.0" encoding="UTF-8"?>\n')
            f.write(
                '<gexf xmlns="http://www.gexf.net/1.2draft" xmlns:viz="http://www.gexf.net/1.1draft/viz" '
                'xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" '
                'xsi:schemaLocation="http://www.gexf.net/1.2draft http://www.gexf.net/1.2draft/gexf.xsd" '
                'version="1.2">\n')
            f.write('<meta lastmodifieddate="{0}">\n'.format(today))
            f.write('<creator>NetworkAnalysis</creator>\n')
            f.write('<description>{0}</description>\n'.format(file_name))
            f.write('</meta>\n')
            f.write('<graph mode="static" defaultedgetype="directed">\n')
            # add data attributes
            f.write('<attributes class="node">\n')
            f.write('<attribute id="2" title="ff_ratio" type="float"/>\n')
            f.write('<attribute id="5" title="exists" type="float"/>\n')
            f.write('</attributes>\n')
            # add nodes
            f.write('<nodes>\n')
            node_id = 0
            list_nodes = []
            for node_tup in self.__nodes:
                node = dict(node_tup)
                f.write('<node id="{0}" label="{1}">\n'.format(
                    node_id, node['screen_name']))
                f.write('<attvalues>\n')
                f.write('<attvalue for="2" value="{0}"/>\n'.format(
                    node['ff_ratio']))
                f.write('</attvalues>\n')
                #f.write('<viz:size value="{0}"/>\n'.format(node['ff_ratio']))
                f.write('</node>\n')
                node_id += 1
                list_nodes.append(node['screen_name'])
            f.write('</nodes>\n')
            # add edges
            f.write('<edges>\n')
            edge_id = 0
            for edge in list(self.__network):
                id_vertexA = list_nodes.index(edge['nodeA']['screen_name'])
                id_vertexB = list_nodes.index(edge['nodeB']['screen_name'])
                weight = edge['weight']
                f.write(
                    '<edge id="{0}" source="{1}" target="{2}" weight="{3}"/>\n'
                    .format(edge_id, id_vertexA, id_vertexB, weight))
                edge_id += 1
            f.write('</edges>\n')
            f.write('</graph>\n')
            f.write('</gexf>\n')
        return f_name