Esempio n. 1
0
    def test_parse_func_var_valid(self):
        test_vars = ('JpsiPt', 'JpsiRap', 'chic_Mass', 'someFunkyVariable_34')
        test_funcs = ('abs', 'sqrt', 'sin')

        for var in test_vars:
            self.assertEqual((var, None), mh.parse_func_var(var))

            for func in test_funcs:
                self.assertEqual((var, getattr(np, func)),
                                 (mh.parse_func_var(func + '(' + var + ')')))
Esempio n. 2
0
    def get_load_vars(self):
        """
        Get the variable names and bounds that are necessary to define the
        variables in a workspace such that data can be imported from a TTree.

        Returns:
            load_vars, bounds: List of tuples of strings, where first element is
                the name of the variable and the second is the boundaries as
                comma separated list
        """
        variables = [
            (self.fit_var, ",".join([str(v) for v in self.fit_range])),
        ]
        for ivar, var in enumerate(self.bin_cut_vars):
            var_name, var_func = parse_func_var(var)
            bounds_up = np.max(self.binning[ivar])

            # For now only handle the 'abs(var)' case separately
            if var_func is not None and 'abs' in var_func.__name__:
                bounds_low = -bounds_up
            else:
                bounds_low = np.min(self.binning[ivar])

            variables.append((var_name, "{}, {}".format(bounds_low,
                                                        bounds_up)))

        return variables
Esempio n. 3
0
 def test_parse_func_var_invalid(self, mock_logger):
     res = mh.parse_func_var('some_funky_func(some_funky_var)')
     mock_logger.error.assert_called_with(
         'Could not find a numpy function named \'some_funky_func\' that '\
         'was parsed from \'some_funky_func(some_funky_var)\''
     )
     self.assertEqual(None, res)
Esempio n. 4
0
def run_fit(model,
            datafile,
            outfile,
            bin_var,
            binning,
            massrange,
            fix_shape=False,
            refit=False,
            weights=None):
    """Import data, run fits and store the results"""
    if bin_var is None:
        logging.fatal('Trying to run a fit without specifying a bin variable. '
                      'It is also possible that this was not implemented for '
                      'the model that is trying to be used. Sorry :(')
        sys.exit(1)

    wsp, costh_bins = create_workspace(model, datafile, bin_var, binning,
                                       massrange, outfile, weights)

    model.define_model(wsp)
    wsp.Print()

    if fix_shape:
        # Refitting doesn't make sense if we already fixed the shapes beforehand
        refit = False
        model.fit(wsp, 'costh_integrated', weighted_fit=weights is not None)
        shape_pars = get_shape_params(wsp, 'costh_integrated', model)
        fix_params(wsp, [(sp, None) for sp in shape_pars])

    bin_var = parse_func_var(bin_var)[0]

    do_binned_fits(model, wsp, costh_bins, refit, weights is not None, bin_var)
    wsp.writeToFile(outfile)
Esempio n. 5
0
def get_binning(config):
    """
    Read the fit config json and get the bin variable and the binning
    """
    binning = parse_binning(config['binning'][1])
    bins = zip(binning[:-1], binning[1:])

    return parse_func_var(config['bin_vars'][1])[0], bins
Esempio n. 6
0
def create_workspace(model,
                     datafile,
                     binvar,
                     binning,
                     massrange,
                     fitfile,
                     weights=None):
    """
    Create the workspace with the data already imported and the model defined,
    also in charge of writing the bin info json file
    """
    wsp = r.RooWorkspace('ws_mass_fit')

    massrange = [float(v) for v in massrange.split(',')]

    # load the data and apply the mass selection of the fitting range immediately
    bin_var = parse_func_var(binvar)  # necessary for loading
    variables = [model.mname, bin_var[0]]
    if weights is not None:
        variables.append(weights)
    data = apply_selections(get_dataframe(datafile, columns=variables),
                            select_bin(model.mname, *massrange))

    costh_bins, costh_means = get_costh_bins(binning, bin_var, data)
    create_bin_info_json(fitfile.replace('.root', '_bin_sel_info.json'),
                         costh_bins, costh_means, bin_var[0], datafile)

    # Create the variables in the workspace
    try_factory(wsp, '{}[{}, {}]'.format(model.mname, *massrange))
    if 'abs' in bin_var[1].__name__:
        try_factory(
            wsp, '{}[{}, {}]'.format(bin_var[0], -np.max(costh_bins),
                                     np.max(costh_bins)))
    else:
        try_factory(
            wsp, '{}[{}, {}]'.format(bin_var[0], np.min(costh_bins),
                                     np.max(costh_bins)))
    dset_vars = r.RooArgSet(get_var(wsp, model.mname),
                            get_var(wsp, bin_var[0]))

    tree = array2tree(data.to_records(index=False))
    if weights is not None:
        try_factory(wsp, '{}[0, 1e5]'.format(weights))
        dataset = r.RooDataSet('full_data', 'full data sample', tree,
                               dset_vars, '', weights)
    else:
        dataset = r.RooDataSet('full_data', 'full data sample', tree,
                               dset_vars)

    ws_import(wsp, dataset)

    return wsp, costh_bins
Esempio n. 7
0
    def __init__(self, config):
        """
        Read all the info from the config and do some computation which are then
        needed throughout
        """
        # TODO: read the configuration from a json file and make that the
        # argument to the function
        self.binning = np.array([
            parse_binning(config['binning'][0]),
            parse_binning(config['binning'][1])
        ])
        # variables as they are defined and used for deciding the binning
        # inside ROOT with string cuts
        self.bin_cut_vars = config['bin_vars']

        # For the internal use and especially for naming the variables it is not
        # possible to have functional variable definitions. Simply use whatever
        # is the argument of func(var) (i.e. var)
        self.bin_vars = [parse_func_var(v)[0] for v in config['bin_vars']]

        self.bins = get_bins(self.binning[0], self.binning[1],
                             self.bin_vars[0], self.bin_vars[1])

        self.fit_var = config['fit_variable']
        self.fit_range = config['fit_range']
        self.expression_strings = config['expression_strings']
        self.proto_params = config['proto_parameters']

        self.sub_models = config['sub_models']
        self.nevent_yields = [m['event_yield'] for m in self.sub_models]

        self.components = [(m['name'], m['plot']) for m in self.sub_models]

        self.full_model = config['full_model']['name']

        # prototype full model expression, where the bin model can be achieved
        # with simple replacements
        self.proto_fexpr = _full_model_expr(config['full_model']['type'],
                                            self.full_model,
                                            [c[0] for c in self.components],
                                            self.nevent_yields)

        self.fix_vars = []
        if 'fix_vars' in config:
            for var in config['fix_vars']:
                self.fix_vars.append((var.keys()[0], var.values()[0]))

        self.plot_config = config['plot_config']
def main(args):
    """Main"""
    frames = args.frames.split(',')
    if args.bin_variable is not None:
        bin_var = parse_func_var(args.bin_variable)
        if args.binning is None:
            logging.error('You have to define a binning for \'{}\' if you want '
                          'to use it as binning variable'.format(bin_var))
            sys.exit(1)

        binning = parse_binning(args.binning)
    else:
        binning = None
        bin_var = None

    logging.info('Processing gen level file')
    gen_hists = create_histograms(get_dataframe(args.genlevelfile), frames,
                                  args.ncosth, args.nphi, bin_var, binning)

    logging.info('Processing reco level file')
    reco_hists = create_histograms(get_dataframe(args.recolevelfile), frames,
                                   args.ncosth, args.nphi, bin_var, binning,
                                   WEIGHT_F)

    logging.debug('Scaling gen level hists by '.format(args.scale_gen))
    for hist in gen_hists.values():
        hist.Scale(args.scale_gen)

    logging.info('calculating acceptance maps')
    acc_maps = OrderedDict()
    for name, hist in reco_hists.iteritems():
        gen_map_n = [n for n in gen_hists if n in name]
        if len(gen_map_n) > 1:
            logging.warning('Found more than 1 gen level map for \'{}\': {}'
                            .format(name, gen_map_n))

        # Still use just the first, since we should always just have 1
        acc_maps[name] = divide(hist, gen_hists[gen_map_n[0]])


    logging.debug('storing to output file')
    outfile = r.TFile(args.outfile, 'recreate' if args.recreate else 'update')
    store_hists(outfile, gen_hists, 'gen_costh_phi', bin_var)
    store_hists(outfile, reco_hists, 'reco_costh_phi', bin_var)
    store_hists(outfile, acc_maps, 'acc_map_costh_phi', bin_var)
 def corr_w(data):
     corr = corrmap.eval(_get_var(data, 'costh_' + frame),
                         _get_var(data, 'phi_' + frame),
                         _get_var(data, *parse_func_var(var)))
     print('Percentage in acceptance: ', np.sum(corr > 0) / float(len(corr)))
     return (corr > 0) * corr