def audio(tag, audio_array, sample_rate, step, walltime): """Package data to one audio. Args: tag (string): Data identifier audio_array (numpy.ndarray or list): audio represented by a numpy.array sample_rate (int): Sample rate of audio step (int): Step of audio walltime (int): Wall time of audio Return: Package with format of record_pb2.Record """ import io import wave fio = io.BytesIO() wave_writer = wave.open(fio, 'wb') wave_writer.setnchannels(1) wave_writer.setsampwidth(2) wave_writer.setframerate(sample_rate) wave_writer.writeframes(audio_array) wave_writer.close() audio_string = fio.getvalue() fio.close() audio_data = Record.Audio(sample_rate=sample_rate, num_channels=1, length_frames=len(audio_array), encoded_audio_string=audio_string, content_type='audio/wav') return Record(values=[ Record.Value(id=step, tag=tag, timestamp=walltime, audio=audio_data) ])
def roc_curve_raw(tag, tp, fp, tn, fn, tpr, fpr, step, walltime): """Package raw data to one roc_curve. Args: tag (string): Data identifier tp (list): True Positive. fp (list): False Positive. tn (list): True Negative. fn (list): False Negative. tpr (list): true positive rate: fpr (list): false positive rate. step (int): Step of roc_curve walltime (int): Wall time of roc_curve num_thresholds (int): Number of thresholds used to draw the curve. weights (float): Multiple of data to display on the curve. Return: Package with format of record_pb2.Record """ """ if isinstance(tp, np.ndarray): tp = tp.astype(int).tolist() if isinstance(fp, np.ndarray): fp = fp.astype(int).tolist() if isinstance(tn, np.ndarray): tn = tn.astype(int).tolist() if isinstance(fn, np.ndarray): fn = fn.astype(int).tolist() if isinstance(tpr, np.ndarray): tpr = tpr.astype(int).tolist() if isinstance(fpr, np.ndarray): fpr = fpr.astype(int).tolist() """ roc_curve = Record.ROC_Curve(TP=tp, FP=fp, TN=tn, FN=fn, tpr=tpr, fpr=fpr) return Record(values=[ Record.Value(id=step, tag=tag, timestamp=walltime, roc_curve=roc_curve) ])
def embedding(tag, labels, hot_vectors, step, labels_meta=None, walltime=None): """Package data to one embedding. Args: tag (string): Data identifier labels (list): A list of labels. hot_vectors (np.array or list): A matrix which each row is feature of labels. step (int): Step of embeddings. walltime (int): Wall time of embeddings. Return: Package with format of record_pb2.Record """ embeddings = Record.Embeddings() if labels_meta: embeddings.label_meta.extend(labels_meta) if isinstance(labels[0], list): temp = [] for index in range(len(labels[0])): temp.append([label[index] for label in labels]) labels = temp for label, hot_vector in zip(labels, hot_vectors): if not isinstance(label, list): label = [label] embeddings.embeddings.append( Record.Embedding(label=label, vectors=hot_vector)) return Record(values=[ Record.Value( id=step, tag=tag, timestamp=walltime, embeddings=embeddings) ])
def text(tag, text_string, step, walltime=None): """Package data to one image. Args: tag (string): Data identifier text_string (string): Value of text step (int): Step of text walltime (int): Wall time of text Return: Package with format of record_pb2.Record """ _text = Record.Text(encoded_text_string=text_string) return Record(values=[ Record.Value(id=step, tag=tag, timestamp=walltime, text=_text) ])
def scalar(tag, value, step, walltime=None): """Package data to one scalar. Args: tag (string): Data identifier value (float): Value of scalar step (int): Step of scalar walltime (int): Wall time of scalar Return: Package with format of record_pb2.Record """ value = float(value) return Record(values=[ Record.Value(id=step, tag=tag, timestamp=walltime, value=value) ])
def histogram(tag, hist, bin_edges, step, walltime): """Package data to one histogram. Args: tag (string): Data identifier hist (np.ndarray or list): The values of the histogram bin_edges (np.ndarray or list): The bin edges step (int): Step of histogram walltime (int): Wall time of histogram Return: Package with format of record_pb2.Record """ histogram = Record.Histogram(hist=hist, bin_edges=bin_edges) return Record(values=[ Record.Value(id=step, tag=tag, timestamp=walltime, histogram=histogram) ])
def image(tag, image_array, step, walltime=None): """Package data to one image. Args: tag (string): Data identifier image_array (numpy.ndarray): Value of iamge step (int): Step of image walltime (int): Wall time of image Return: Package with format of record_pb2.Record """ image_bytes = imgarray2bytes(image_array) image = Record.Image(encoded_image_string=image_bytes) return Record(values=[ Record.Value(id=step, tag=tag, timestamp=walltime, image=image) ])
def pr_curve_raw(tag, tp, fp, tn, fn, precision, recall, step, walltime): """Package raw data to one pr_curve. Args: tag (string): Data identifier tp (list): True Positive. fp (list): False Positive. tn (list): True Negative. fn (list): False Negative. precision (list): The fraction of retrieved documents that are relevant to the query: recall (list): The fraction of the relevant documents that are successfully retrieved. step (int): Step of pr_curve walltime (int): Wall time of pr_curve num_thresholds (int): Number of thresholds used to draw the curve. weights (float): Multiple of data to display on the curve. Return: Package with format of record_pb2.Record """ """ if isinstance(tp, np.ndarray): tp = tp.astype(int).tolist() if isinstance(fp, np.ndarray): fp = fp.astype(int).tolist() if isinstance(tn, np.ndarray): tn = tn.astype(int).tolist() if isinstance(fn, np.ndarray): fn = fn.astype(int).tolist() if isinstance(precision, np.ndarray): precision = precision.astype(int).tolist() if isinstance(recall, np.ndarray): recall = recall.astype(int).tolist() """ prcurve = Record.PRCurve(TP=tp, FP=fp, TN=tn, FN=fn, precision=precision, recall=recall) return Record(values=[ Record.Value( id=step, tag=tag, timestamp=walltime, pr_curve=prcurve) ])
def audio(tag, audio_array, sample_rate, step, walltime): """Package data to one audio. Args: tag (string): Data identifier audio_array (numpy.ndarray or list): audio represented by a numpy.array sample_rate (int): Sample rate of audio step (int): Step of audio walltime (int): Wall time of audio Return: Package with format of record_pb2.Record """ audio_array = audio_array.squeeze() if abs(audio_array).max() > 1: print('warning: audio amplitude out of range, auto clipped.') audio_array = audio_array.clip(-1, 1) assert (audio_array.ndim == 1), 'input tensor should be 1 dimensional.' audio_array = [int(32767.0 * x) for x in audio_array] import io import wave import struct fio = io.BytesIO() wave_writer = wave.open(fio, 'wb') wave_writer.setnchannels(1) wave_writer.setsampwidth(2) wave_writer.setframerate(sample_rate) audio_enc = b'' audio_enc += struct.pack("<" + "h" * len(audio_array), *audio_array) wave_writer.writeframes(audio_enc) wave_writer.close() audio_string = fio.getvalue() fio.close() audio_data = Record.Audio( sample_rate=sample_rate, num_channels=1, length_frames=len(audio_array), encoded_audio_string=audio_string, content_type='audio/wav') return Record(values=[ Record.Value(id=step, tag=tag, timestamp=walltime, audio=audio_data) ])
def meta_data(tag='meta_data_tag', display_name="", step=0, walltime=None): """Package data to one meta_data. Meta data is info for one record file, include `display_name` etc. Args: tag (string): Data identifier display_name (string): Replace step (int): Step of scalar walltime (int): Wall time of scalar Return: Package with format of record_pb2.Record """ meta = Record.MetaData(display_name=display_name) return Record(values=[ Record.Value(id=step, tag=tag, timestamp=walltime, meta_data=meta) ])
def hparam(name, hparam_dict, metric_list, walltime): """Package data to one histogram. Args: name (str): Name of hparam. hparam_dict (dictionary): Each key-value pair in the dictionary is the name of the hyper parameter and it's corresponding value. The type of the value can be one of `bool`, `string`, `float`, `int`, or `None`. metric_list (list): Name of all metrics. walltime (int): Wall time of hparam. Return: Package with format of record_pb2.Record """ hm = Record.HParam() hm.name = name for k, v in hparam_dict.items(): if v is None: continue hparamInfo = Record.HParam.HparamInfo() hparamInfo.name = k if isinstance(v, int): hparamInfo.int_value = v hm.hparamInfos.append(hparamInfo) elif isinstance(v, float): hparamInfo.float_value = v hm.hparamInfos.append(hparamInfo) elif isinstance(v, str): hparamInfo.string_value = v hm.hparamInfos.append(hparamInfo) else: print("The value of %s must be int, float or str, not %s" % (k, str(type(v)))) for metric in metric_list: metricInfo = Record.HParam.HparamInfo() metricInfo.name = metric metricInfo.float_value = 0 hm.metricInfos.append(metricInfo) return Record(values=[ Record.Value(id=1, tag="hparam", timestamp=walltime, hparam=hm) ])
def image(tag, image_array, step, walltime=None, dataformats="HWC"): """Package data to one image. Args: tag (string): Data identifier image_array (np.ndarray): Value of image step (int): Step of image walltime (int): Wall time of image dataformats (string): Format of image Return: Package with format of record_pb2.Record """ image_array = denormalization(image_array) image_array = convert_to_HWC(image_array, dataformats) image_bytes = imgarray2bytes(image_array) image = Record.Image(encoded_image_string=image_bytes) return Record(values=[ Record.Value(id=step, tag=tag, timestamp=walltime, image=image) ])
def embedding(tag, labels, hot_vectors, step, walltime=None): """Package data to one embedding. Args: tag (string): Data identifier labels (numpy.array or list): A list of labels. hot_vectors (numpy.array or list): A matrix which each row is feature of labels. step (int): Step of embeddings. walltime (int): Wall time of embeddings. Return: Package with format of record_pb2.Record """ embeddings = Record.Embeddings() for index in range(len(hot_vectors)): embeddings.embeddings.append( Record.Embedding(label=labels[index], vectors=hot_vectors[index])) return Record(values=[ Record.Value( id=step, tag=tag, timestamp=walltime, embeddings=embeddings) ])