Esempio n. 1
0
def embedding(tag, labels, hot_vectors, step, labels_meta=None, walltime=None):
    """Package data to one embedding.

    Args:
        tag (string): Data identifier
        labels (list): A list of labels.
        hot_vectors (np.array or list): A matrix which each row is
            feature of labels.
        step (int): Step of embeddings.
        walltime (int): Wall time of embeddings.

    Return:
        Package with format of record_pb2.Record
    """
    embeddings = Record.Embeddings()

    if labels_meta:
        embeddings.label_meta.extend(labels_meta)

    if isinstance(labels[0], list):
        temp = []
        for index in range(len(labels[0])):
            temp.append([label[index] for label in labels])
        labels = temp
    for label, hot_vector in zip(labels, hot_vectors):
        if not isinstance(label, list):
            label = [label]
        embeddings.embeddings.append(
            Record.Embedding(label=label, vectors=hot_vector))

    return Record(values=[
        Record.Value(
            id=step, tag=tag, timestamp=walltime, embeddings=embeddings)
    ])
Esempio n. 2
0
def embedding(tag, labels, hot_vectors, step, walltime=None):
    """Package data to one embedding.

    Args:
        tag (string): Data identifier
        labels (numpy.array or list): A list of labels.
        hot_vectors (numpy.array or list): A matrix which each row is
            feature of labels.
        step (int): Step of embeddings.
        walltime (int): Wall time of embeddings.

    Return:
        Package with format of record_pb2.Record
    """
    embeddings = Record.Embeddings()

    for index in range(len(hot_vectors)):
        embeddings.embeddings.append(
            Record.Embedding(label=labels[index], vectors=hot_vectors[index]))

    return Record(values=[
        Record.Value(
            id=step, tag=tag, timestamp=walltime, embeddings=embeddings)
    ])