Esempio n. 1
0
def load_labelled_volume(data, vmin=0, alpha=1, **kwargs):
    """
        Load volume image from .nrrd file. 
        It assume that voxels with value = 0 are empty while voxels with values > 0
        are labelles (e.g. to indicate the location of a brain region in a reference atlas)

        :param data: str, path to file with volume data or 3d numpy array
        :param vmin: float, values below this numner will be assigned an alpha=0 and not be visualized
        :param **kwargs: kwargs to pass to the Volume class from vtkplotter
        :param alpha: float in range [0, 1], transparency [for the part of volume with value > vmin]
    """
    # Load/check volumetric data
    if isinstance(data, str):  # load from file
        if not os.path.isfile(data):
            raise FileNotFoundError(f'Volume data file {data} not found')

        try:
            data = brainio.load_any(data)
        except:
            raise ValueError(f"Could not load volume data from file: {data}")

    elif not isinstance(data, np.ndarray):
        raise ValueError(
            f"Data should be a filepath or np array, not: {data.__type__}")

    # Create volume and set transparency range
    vol = Volume(data, alpha=alpha, **kwargs)

    otf = vol.GetProperty().GetScalarOpacity()
    otf.RemoveAllPoints()
    otf.AddPoint(vmin, 0)  # set to transparent
    otf.AddPoint(vmin + .1, alpha)  # set to opaque
    otf.AddPoint(data.max(), alpha)

    return vol
    def add_volume(self,
                   volume,
                   cmap='afmhot_r',
                   alpha=1,
                   add_colorbar=True,
                   **kwargs):
        """
            Renders intensitdata from a 3D numpy array as a lego volumetric actor. 

            :param volume: np 3D array with number of dimensions = those of the 100um reference space. 
            :param cmap: str with name of colormap to use
            :param alpha: float, transparency
          
            :param add_colorbar: if True a colorbar is added to show the values of the colormap
        """
        # Parse kwargs
        line_width = kwargs.pop('line_width', 1)
        if cmap == 'random' or not cmap or cmap is None:
            cmap = get_random_colormap()

        # Get vmin and vmax threshold for visualisation
        vmin = kwargs.pop('vmin', 0.000001)
        vmax = kwargs.pop('vmax', np.nanmax(volume))

        # Check values
        if np.max(volume) > vmax:
            print(
                "While rendering mapped projection some of the values are above the vmax threshold."
                + "They will not be displayed." +
                f" vmax was {vmax} but found value {round(np.max(volume), 5)}."
            )

        if vmin > vmax:
            raise ValueError(
                f'The vmin threhsold [{vmin}] cannot be larger than the vmax threshold [{vmax}'
            )
        if vmin < 0: vmin = 0

        # Get 'lego' actor
        vol = Volume(volume)
        lego = vol.legosurface(vmin=vmin, vmax=vmax, cmap=cmap)

        # Scale and color actor
        lego.alpha(alpha).lw(line_width).scale(self.voxel_size)
        lego.cmap = cmap

        # Add colorbar
        if add_colorbar:
            lego.addScalarBar(vmin=vmin,
                              vmax=vmax,
                              horizontal=1,
                              c='k',
                              pos=(0.05, 0.05),
                              titleFontSize=40)

        # Add to scene
        actor = self.scene.add_vtkactor(lego)
        return actor
Esempio n. 3
0
def load_volume_file(filepath, **kwargs):
    """
	Load a volume file (e.g., .nii) and return vtk actor

	:param filepath: path to file
	:param **kwargs: 

	"""
    from vtkplotter import Volume, load
    if not os.path.isfile(filepath): raise FileNotFoundError(filepath)

    if ".x3d" in filepath.lower():
        raise ValueError(
            "brainrender cannot use .x3d data as they are not supported by vtkplotter"
        )

    elif "nii" in filepath.lower() or ".label" in filepath.lower():
        import nibabel as nb
        data = nb.load(filepath)
        d = data.get_fdata()

        act = Volume(d, **kwargs)

    else:
        act = load(filepath, **kwargs)
        if act is None:
            raise ValueError("Could not load {}".format(filepath))

    return act
Esempio n. 4
0
def load_mesh_from_file(filepath, *args, **kwargs):
    """	
	Load a a mesh or volume from files like .obj, .stl, ...

	:param filepath: path to file
	:param **kwargs: 

	"""
    if not os.path.isfile(filepath):
        raise FileNotFoundError(filepath)

    try:
        actor = load(filepath, *args, **kwargs)
    except:
        actor = Volume(load_volume_file(filepath, *args, **kwargs))

    return actor
Esempio n. 5
0
# Create the reader for the data.
reader = vtk.vtkXMLImageDataReader()
reader.SetFileName(datadir+"vase.vti")
reader.Update()
img = reader.GetOutput() # vtkImageData object

# specify the data array in the file to process
# img.GetPointData().SetActiveAttribute('SLCImage', 0)

# NB: all the above lines could be reduced to:
#img = load(datadir+"vase.vti").imagedata()

#################################
from vtkplotter import Volume, show, Text

# can set colors and transparencies along the scalar range
# from minimum to maximum value. In this example voxels with
# the smallest value will be completely transparent (and white)
# while voxels with highest value of the scalar will get alpha=0.8
# and color will be=(0,0,1)
vol1 = Volume(img,
              mode=0, # composite rendering
              c=["white", "fuchsia", "dg", (0,0,1)],
              alpha=[0.0, 0.2, 0.3, 0.8])

# mode = 1 is maximum-projection volume rendering
vol2 = load(datadir+"vase.vti").mode(1).addPos(60,0,0)

# show command creates and returns an instance of class Plotter
show(vol1, vol2, Text(__doc__), bg="w", axes=1)
Esempio n. 6
0
model.add(Dense(neurons, activation="relu"))
model.add(Dense(neurons, activation="relu"))
model.add(Dense(1, activation="sigmoid"))

model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])

model.fit(datalist, scalars, epochs=50, batch_size=64)

predicted_scalars = model.predict(datalist)

model.summary()

idx = 0
vispred = np.zeros([n, n, n])
for i, x in enumerate(ls):
    for j, y in enumerate(ls):
        for k, z in enumerate(ls):
            vispred[i, j, k] = predicted_scalars[idx]
            idx += 1

v1 = Volume(visdata)
v2 = Volume(vispred)

s1 = v1.isosurface(threshold=[t for t in arange(0, 1, 0.1)])
s1.alpha(0.5)

s2 = v2.isosurface(threshold=[t for t in arange(0, 1, 0.1)])
s2.alpha(0.5)

show([[v1, s1], s2], N=2, axes=8)
Esempio n. 7
0
model = Sequential()
model.add(Dense(neurons, activation="relu", input_dim=3))
model.add(Dense(neurons, activation="relu"))
model.add(Dense(neurons, activation="relu"))
model.add(Dense(1, activation="sigmoid"))

model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])

model.fit(shuffled_datalist,
          shuffled_scalars,
          epochs=epochs,
          batch_size=max(nx, ny, nz))

predicted_scalars = model.predict(datalist)
model.summary()

idx = 0
vispred = np.zeros([nx, ny, nz])
for i, x in enumerate(lsx):
    for j, y in enumerate(lsy):
        for k, z in enumerate(lsz):
            vispred[i, j, k] = predicted_scalars[idx]
            idx += 1

v1 = Volume(visdata)
v2 = Volume(vispred)
s1 = v1.isosurface(threshold=0).alpha(0.8)
s2 = v2.isosurface(threshold=0).alpha(0.8)

show(v1, v2, s1, s2, N=4, axes=8, bg="w")
Esempio n. 8
0
iteration = 4
size = 3**iteration

voxels = np.ones((size, size, size))


def iterate(length, x, y, z):

    nl = length // 3
    if nl < 1: return

    margin = (nl - 1) // 2
    voxels[z - margin:z + margin + 1, y - margin:y + margin + 1, :] = 0
    voxels[z - margin:z + margin + 1, :, x - margin:x + margin + 1] = 0
    voxels[:, y - margin:y + margin + 1, x - margin:x + margin + 1] = 0

    for ix, iy, iz in np.ndindex((3, 3, 3)):
        if (1 if ix != 1 else 0) + (1 if iy != 1 else 0) + (1 if iz != 1 else
                                                            0) != 2:
            iterate(nl, x + (ix - 1) * nl, y + (iy - 1) * nl,
                    z + (iz - 1) * nl)


iterate(size, size // 2, size // 2, size // 2)
print('voxels min, max =', np.min(voxels), np.max(voxels))

vol = Volume(voxels)
lego = vol.legosurface(-0.1, 1.1, cmap='afmhot_r')

show(vol, lego, N=2, bg='w')
Esempio n. 9
0
scals = np.abs(coords[:, 2])  # let the scalar be the z of point itself
fact = 1. / (bins - 1)  # conversion factor btw the 2 ranges

vp = Plotter(verbose=0)
vp.ztitle = 'z == scalar value'
cloud = vp.points(coords)

# fill the vtkImageData object
pb = ProgressBar(0, bins, c=4)
for iz in pb.range():
    pb.print()
    for iy in range(bins):
        for ix in range(bins):

            pt = vector(ix, iy, iz) * fact
            closestPointsIDs = cloud.closestPoint(pt, N=5, returnIds=True)

            num, den = 0, 0
            for i in closestPointsIDs:  # work out RBF manually on N points
                invdist = 1 / (mag2(coords[i] - pt) + 1e-06)
                num += scals[i] * invdist
                den += invdist
            img.SetScalarComponentFromFloat(ix, iy, iz, 0, num / den)

#vp.write(img, 'imgcube.tif') # or .vti

# set colors and transparencies along the scalar range
vol = Volume(img, c=['r', 'g', 'b'], alphas=[0.4, 0.8])  #vtkVolume
act = vp.points(coords / fact)
vp.show([vol, act], viewup='z')
Esempio n. 10
0
model = Sequential()
model.add(Dense(neurons, activation="relu", input_dim=3))
model.add(Dense(neurons, activation="relu"))
model.add(Dense(neurons, activation="relu"))
model.add(Dense(1, activation="sigmoid"))

model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])

model.fit(shuffled_datalist,
          shuffled_scalars,
          epochs=epochs,
          batch_size=max(nx, ny, nz))

predicted_scalars = model.predict(datalist)
model.summary()

idx = 0
vispred = np.zeros([nx, ny, nz])
for i, x in enumerate(lsx):
    for j, y in enumerate(lsy):
        for k, z in enumerate(lsz):
            vispred[i, j, k] = predicted_scalars[idx]
            idx += 1

v1 = Volume(visdata)
v2 = Volume(vispred)
s1 = isosurface(v1, threshold=0).alpha(0.8)
s2 = isosurface(v2, threshold=0).alpha(0.8)

show([v1, v2, s1, s2], N=4, axes=8, bg="w")
Esempio n. 11
0
"""Create a Volume from a numpy array"""
import numpy as np

data_matrix = np.zeros([75, 75, 75], dtype=np.uint8)
# all voxels have value zero except:
data_matrix[0:35, 0:35, 0:35] = 1
data_matrix[35:55, 35:55, 35:55] = 2
data_matrix[55:74, 55:74, 55:74] = 3

from vtkplotter import Volume, Text2D, show

vol = Volume(data_matrix, c=['white', 'b', 'g', 'r'])
show(vol, Text2D(__doc__), axes=1)
'''
Work with vtkVolume objects and surface meshes 
in the same rendering window.
'''
from vtkplotter import loadImageData, Plotter, Volume, Sphere, Text

vp = Plotter(axes=0, verbose=0, bg='w')

# Load a 3D voxel dataset (returns a vtkImageData object):
img = loadImageData('data/embryo.slc', spacing=[1, 1, 1])

# Build a vtkVolume object.
# A set of transparency values - of any length - can be passed
# to define the opacity transfer function in the range of the scalar.
#  E.g.: setting alphas=[0, 0, 0, 1, 0, 0, 0] would make visible
#  only voxels with value close to 98.5 (see print output).
vol = Volume(img, c='green', alphas=[0, 0.4, 0.9, 1])  # vtkVolume

# can relocate volume in space:
#vol.scale(0.3).pos([10,100,0]).rotate(90, axis=[0,1,1])

sph = Sphere(pos=[100, 100, 100], r=20)  # add a dummy surface

doc = Text(__doc__, c='k')

# show both vtkVolume and vtkActor
vp.show([vol, sph, doc], zoom=1.4)
Esempio n. 13
0
"""
Generate the isosurfaces corresponding to a set of thresholds.
(These surfaces are not separate meshes).
"""
from vtk import vtkQuadric, vtkSampleFunction

# Quadric definition. This is a type of implicit function.
quadric = vtkQuadric()
quadric.SetCoefficients(0.5, 1, 0.2, 0, 0.1, 0, 0, 0.2, 0, 0)

# the vtkSampleFunction evaluates quadric over a volume
sample = vtkSampleFunction()
sample.SetSampleDimensions(40, 40, 40)
sample.SetImplicitFunction(quadric)
sample.Update()

img = sample.GetOutput()  # vtkImageData
print("Scalar Range", img.GetScalarRange(), "\ntry press shift-x.")

########################
from vtkplotter import show, Text, Volume

# generate an isosurface the volume for each thresholds
ts = [0.1, 0.25, 0.4, 0.6, 0.75, 0.9]

# Use c=None to use the default vtk color map. isos is of type Actor
isos = Volume(img).isosurface(threshold=ts)

show(isos, Text(__doc__))
Esempio n. 14
0
# Using normal vtk commands to load a xml vti file
# then use vtkplotter to show the resulting 3d image.
#
import vtk

# Create the reader for the data.
reader = vtk.vtkXMLImageDataReader()
reader.SetFileName('data/vase.vti')
reader.Update()
img = reader.GetOutput()

# specify the data array in the file to process
#img.GetPointData().SetActiveAttribute('SLCImage', 0)

#################################
from vtkplotter import Volume, load, show

# can set colors and transparencies along the scalar range
vol = Volume(img,
             c=['gray', 'fuchsia', 'dg', (0, 0, 1)],
             alphas=[0.1, 0.2, 0.3, 0.8])

# load command returns an isosurface (vtkActor) of the 3d image
iso = load('data/vase.vti', threshold=140).wire(True).alpha(0.1)

# show command creates and returns an instance of class Plotter
show([vol, iso], verbose=0)
Esempio n. 15
0
"""
Using normal vtk commands to load a xml vti file
then use vtkplotter to show the resulting 3d image.
"""
import vtk
from vtkplotter import datadir

# Create the reader for the data.
reader = vtk.vtkXMLImageDataReader()
reader.SetFileName(datadir + "vase.vti")
reader.Update()
img = reader.GetOutput()

# specify the data array in the file to process
# img.GetPointData().SetActiveAttribute('SLCImage', 0)

#################################
from vtkplotter import Volume, load, show, Text

# can set colors and transparencies along the scalar range
vol = Volume(img,
             c=["gray", "fuchsia", "dg", (0, 0, 1)],
             alpha=[0.1, 0.2, 0.3, 0.8])

# load command returns an isosurface (vtkActor) of the 3d image
iso = load(datadir + "vase.vti", threshold=140).wire(True).alpha(0.1)

# show command creates and returns an instance of class Plotter
show(vol, iso, Text(__doc__), bg="w")
Esempio n. 16
0
"""Create a Volume from a numpy array"""
import numpy as np

data_matrix = np.zeros([75, 75, 75], dtype=np.uint8)
# all voxels have value zero except:
data_matrix[0:35, 0:35, 0:35] = 1
data_matrix[35:55, 35:55, 35:55] = 2
data_matrix[55:74, 55:74, 55:74] = 3

from vtkplotter import Volume, show

vol = Volume(data_matrix, c=['white', 'b', 'g', 'r'])
vol.addScalarBar3D()

show(vol, __doc__, axes=1)
Esempio n. 17
0
def addCutterTool(actor):
    """Create handles to cut away parts of a mesh.

    .. hint:: |cutter| |cutter.py|_
    """
    if isinstance(actor, vtk.vtkVolume):
        return _addVolumeCutterTool(actor)
    elif isinstance(actor, vtk.vtkImageData):
        from vtkplotter import Volume
        return _addVolumeCutterTool(Volume(actor))

    vp = settings.plotter_instance
    if not vp.renderer:
        save_int = vp.interactive
        vp.show(interactive=0)
        vp.interactive = save_int

    vp.clickedActor = actor
    apd = actor.polydata()

    planes = vtk.vtkPlanes()
    planes.SetBounds(apd.GetBounds())

    clipper = vtk.vtkClipPolyData()
    clipper.GenerateClipScalarsOn()
    clipper.SetInputData(apd)
    clipper.SetClipFunction(planes)
    clipper.InsideOutOn()
    clipper.GenerateClippedOutputOn()
    clipper.Update()

    act0 = Actor(clipper.GetOutput())
    #    act0.mapper = actor.mapper
    #    act0.mapper.Modified()
    #    print(actor.mapper.GetLookupTable())
    #    print(actor.polydata().GetPointData().GetScalars())
    #    print(act0.polydata().GetCellData().GetScalars().GetRange())
    #    print(act0.mapper.GetScalarRange())
    #    act0.mapper.SetScalarRange(act0.polydata().GetCellData().GetScalars().GetRange())
    #    act0.cellColors('pointColors_seismic', vmin=40, vmax=130)

    act1Mapper = vtk.vtkPolyDataMapper()  # the part which is cut away
    act1Mapper.SetInputConnection(
        clipper.GetClippedOutputPort())  # needs OutputPort??
    act1 = vtk.vtkActor()
    act1.SetMapper(act1Mapper)
    act1.GetProperty().SetOpacity(0.02)
    act1.GetProperty().SetRepresentationToWireframe()
    act1.VisibilityOn()

    vp.renderer.AddActor(act0)
    vp.renderer.AddActor(act1)
    vp.renderer.RemoveActor(actor)

    def SelectPolygons(vobj, event):
        vobj.GetPlanes(planes)

    boxWidget = vtk.vtkBoxWidget()
    boxWidget.OutlineCursorWiresOn()
    boxWidget.GetSelectedOutlineProperty().SetColor(1, 0, 1)
    boxWidget.GetOutlineProperty().SetColor(0.1, 0.1, 0.1)
    boxWidget.GetOutlineProperty().SetOpacity(0.8)
    boxWidget.SetPlaceFactor(1.05)
    boxWidget.SetInteractor(vp.interactor)
    boxWidget.SetInputData(apd)
    boxWidget.PlaceWidget()
    boxWidget.AddObserver("InteractionEvent", SelectPolygons)
    boxWidget.On()

    vp.cutterWidget = boxWidget
    vp.clickedActor = act0
    ia = vp.actors.index(actor)
    vp.actors[ia] = act0

    colors.printc("Mesh Cutter Tool:", c="m", invert=1)
    colors.printc("  Move gray handles to cut away parts of the mesh", c="m")
    colors.printc("  Press X to save file to: clipped.vtk", c="m")

    vp.interactor.Start()
    boxWidget.Off()
    vp.widgets.append(boxWidget)

    vp.interactor.Start()  # allow extra interaction

    return act0
Esempio n. 18
0
iteration = 4
size = 3**iteration

voxels = np.ones((size, size, size))


def iterate(length, x, y, z):

    nl = length // 3
    if nl < 1: return

    margin = (nl - 1) // 2
    voxels[z - margin:z + margin + 1, y - margin:y + margin + 1, :] = 0
    voxels[z - margin:z + margin + 1, :, x - margin:x + margin + 1] = 0
    voxels[:, y - margin:y + margin + 1, x - margin:x + margin + 1] = 0

    for ix, iy, iz in np.ndindex((3, 3, 3)):
        if (1 if ix != 1 else 0) + (1 if iy != 1 else 0) + (1 if iz != 1 else
                                                            0) != 2:
            iterate(nl, x + (ix - 1) * nl, y + (iy - 1) * nl,
                    z + (iz - 1) * nl)


iterate(size, size // 2, size // 2, size // 2)
print('voxels min, max =', np.min(voxels), np.max(voxels))

vol = Volume(voxels)
lego = legosurface(vol, -0.1, 1.1, cmap='afmhot_r')

show(vol, lego, N=2, bg='w')
Esempio n. 19
0
import numpy as np

data_matrix = np.zeros([75, 75, 75], dtype=np.uint8)
# all voxels have value zero except:
data_matrix[0:35, 0:35, 0:35] = 1
data_matrix[35:55, 35:55, 35:55] = 2
data_matrix[55:74, 55:74, 55:74] = 3

from vtkplotter import Volume

vol = Volume(data_matrix, c=['white', 'b', 'g', 'r'])
vol.show(axes=1)
Esempio n. 20
0
# Perform other simple mathematical operation between 3d images.
# Possible operations are: +, -, /, 1/x, sin, cos, exp, log, abs, **2, sqrt,
#   min, max, atan, atan2, median, mag, dot, gradient, divergence, laplacian.
# Alphas defines the opacity transfer function in the scalar range.
#
from vtkplotter import Plotter, loadImageData
from vtkplotter import imageOperation, Volume

vp = Plotter(N=8, axes=4)

img0 = loadImageData('data/embryo.slc')  # vtkImageData object
v0 = Volume(img0, c=0)  # build a vtk.vtkVolume derived object
vp.show(v0, at=0)

img1 = imageOperation(img0, 'gradient')
img1 = imageOperation(img1, '+', 92.0)
v1 = Volume(img1, c=1, alphas=[0, 1, 0, 0, 0])
vp.show(v1, at=1)

img2 = imageOperation(img0, 'divergence')
v2 = Volume(img2, c=2)
vp.show(v2, at=2)

img3 = imageOperation(img0, 'laplacian')
v3 = Volume(img3, c=3, alphas=[0, 1, 0, 0, 1])
vp.show(v3, at=3)

img4 = imageOperation(img0, 'median')
v4 = Volume(img4, c=4)
vp.show(v4, at=4)
Esempio n. 21
0
"""Modify a Volume dataset and
colorize voxels individually
"""
from vtkplotter import Text2D, Volume, show
import numpy as np

vol = Volume(shape=(10,11,12), mode=0)
vol.alpha(0.8).jittering(False)
vol.interpolation(0) # nearest neighbour interpolation type

# Overwrite the (sofar empty) voxel data with new data
vol.imagedata().AllocateScalars(3, 4) # type 3 corresponds to np.uint8
arr = vol.getPointArray()
arr[:] = np.random.randint(0,255, (10*11*12,4)).astype(np.uint8)

# For 4 component data, the first 3 directly represent RGB, no lookup table.
# (see https://vtk.org/doc/nightly/html/classvtkVolumeProperty.html):
vol.GetProperty().IndependentComponentsOff()

show(vol, Text2D(__doc__), axes=1)
Esempio n. 22
0
reader.SetFileName(datadir + "vase.vti")
reader.Update()
img = reader.GetOutput()  # vtkImageData object

# NB: the above lines could be reduced to:
#img = load(datadir+"vase.vti").imagedata()

#################################
from vtkplotter import Volume, show, Text

# can set colors and transparencies along the scalar range
# from minimum to maximum value. In this example voxels with
# the smallest value will be completely transparent (and white)
# while voxels with highest value of the scalar will get alpha=0.8
# and color will be=(0,0,1)
vol1 = Volume(img, mode=0)  # composite rendering
vol1.color(["white", "fuchsia", "dg", (0, 0, 1)])
#vol1.color('jet') # a matplotlib colormap name is also accepted
vol1.alpha([0.0, 0.2, 0.3, 0.8])

# a transparency for the GRADIENT of the scalar can also be set:
# in this case when the scalar is ~constant the gradient is ~zero
# and the voxel are made transparent:
vol1.alphaGradient([0.0, 0.5, 0.9])

# mode = 1 is maximum-projection volume rendering
vol2 = load(datadir + "vase.vti").mode(1).addPos(60, 0, 0)

# show command creates and returns an instance of class Plotter
show(vol1, vol2, Text(__doc__), bg="w", axes=1)
Esempio n. 23
0
###################################### getActors
print('Test getMeshes')
assert len(asse.unpack()) == 2
assert asse.unpack(0) == cone
assert asse.unpack(1) == sphere

assert 4.1 < asse.diagonalSize() < 4.2

############################################################################ Volume
X, Y, Z = np.mgrid[:30, :30, :30]
scalar_field = ((X - 15)**2 + (Y - 15)**2 + (Z - 15)**2) / 225
print('Test Volume, scalar min, max =', np.min(scalar_field),
      np.max(scalar_field))

vol = Volume(scalar_field)
volarr = vol.getPointArray()

assert volarr.shape[0] == 27000
assert np.max(volarr) == 3
assert np.min(volarr) == 0

###################################### isosurface
print('Test isosurface')
iso = vol.isosurface(threshold=1.0)
print('area', iso.area())
assert 2540 < iso.area() < 3000

#lego = vol.legosurface(vmin=0.3, vmax=0.5)
#show(lego)
#print('lego.N()', lego.N())
Esempio n. 24
0
"""Load and render a 3D Volume.

mode=0, composite rendering
mode=1, maximum-projection rendering
"""
import vtk
from vtkplotter import datadir, load, Volume, show

# Create the reader for the data.
reader = vtk.vtkXMLImageDataReader()
reader.SetFileName(datadir + "vase.vti")
reader.Update()
img = reader.GetOutput()  # vtkImageData object

vol1 = Volume(img, mode=0)  # mode=0, composite rendering

# --- NB: THE ABOVE LINES COULD BE REDUCED TO:
#vol1 = load(datadir+"vase.vti")
# -------------------------------------------

# can set colors and transparencies along the scalar range
# from minimum to maximum value. In this example voxels with
# the smallest value will be completely transparent (and white)
# while voxels with highest value of the scalar will get alpha=0.8
# and color will be=(0,0,1)
vol1.color(["white", "fuchsia", "dg", (0, 0, 1)])
#vol1.color('jet') # a matplotlib colormap name is also accepted
vol1.alpha([0.0, 0.2, 0.3, 0.8])

# a transparency for the GRADIENT of the scalar can also be set:
# in this case when the scalar is ~constant the gradient is ~zero