def sign_convert_value(concrete_type: ConcreteType, value: Value) -> Value: """Converts the values to matched the signedness of the concrete type. Converts bits-typed Values contained within the given Value to match the signedness of the ConcreteType. Examples: invocation: sign_convert_value(s8, u8:64) returns: s8:64 invocation: sign_convert_value(s3, u8:7) returns: s3:-1 invocation: sign_convert_value((s8, u8), (u8:42, u8:10)) returns: (s8:42, u8:10) This conversion functionality is required because the Values used in the DSLX may be signed while Values in IR interpretation and Verilog simulation are always unsigned. This function is idempotent. Args: concrete_type: ConcreteType to match. value: Input value. Returns: Sign-converted value. """ if isinstance(concrete_type, concrete_type_mod.TupleType): assert value.is_tuple() assert len(value.tuple_members) == concrete_type.get_tuple_length() return Value.make_tuple( tuple( sign_convert_value(t, a) for t, a in zip( concrete_type.get_unnamed_members(), value.tuple_members))) elif isinstance(concrete_type, concrete_type_mod.ArrayType): assert value.is_array() assert len(value.array_payload.elements) == concrete_type.size return Value.make_array( tuple( sign_convert_value(concrete_type.get_element_type(), v) for v in value.array_payload.elements)) elif concrete_type_mod.is_sbits(concrete_type): return Value.make_sbits(value.get_bit_count(), value.get_bits_value()) else: assert concrete_type_mod.is_ubits(concrete_type) return value
def convert_interpreter_value_to_ir( interpreter_value: dslx_value.Value) -> ir_value.Value: """Recursively translates a DSLX Value into an IR Value.""" if interpreter_value.is_bits() or interpreter_value.is_enum(): return ir_value.Value( int_to_bits(interpreter_value.get_bits_value_check_sign(), interpreter_value.get_bit_count())) elif interpreter_value.is_array(): ir_arr = [] for e in interpreter_value.array_payload.elements: ir_arr.append(convert_interpreter_value_to_ir(e)) return ir_value.Value.make_array(ir_arr) elif interpreter_value.is_tuple(): ir_tuple = [] for e in interpreter_value.tuple_members: ir_tuple.append(convert_interpreter_value_to_ir(e)) return ir_value.Value.make_tuple(ir_tuple) else: raise UnsupportedJitConversionError( "Can't convert to JIT value: {}".format(interpreter_value))
def _value_compatible_with_type(module: ast.Module, type_: ConcreteType, value: Value) -> bool: """Returns whether value is compatible with type_ (recursively).""" assert isinstance(value, Value), value if isinstance(type_, TupleType) and value.is_tuple(): return all( _value_compatible_with_type(module, ct, m) for ct, m in zip(type_.get_unnamed_members(), value.tuple_members)) if isinstance(type_, ArrayType) and value.is_array(): et = type_.get_element_type() return all( _value_compatible_with_type(module, et, m) for m in value.array_payload.elements) if isinstance(type_, EnumType) and value.tag == Tag.ENUM: return type_.get_nominal_type(module) == value.type_ if isinstance(type_, BitsType) and not type_.signed and value.tag == Tag.UBITS: return value.bits_payload.bit_count == type_.get_total_bit_count() if isinstance(type_, BitsType) and type_.signed and value.tag == Tag.SBITS: return value.bits_payload.bit_count == type_.get_total_bit_count() if value.tag == Tag.ENUM and isinstance(type_, BitsType): return (value.type_.get_signedness() == type_.signed and value.bits_payload.bit_count == type_.get_total_bit_count()) if value.tag == Tag.ARRAY and is_ubits(type_): flat_bit_count = value.array_payload.flatten().bits_payload.bit_count return flat_bit_count == type_.get_total_bit_count() if isinstance(type_, EnumType) and value.is_bits(): return (type_.signed == (value.tag == Tag.SBITS) and type_.get_total_bit_count() == value.get_bit_count()) raise NotImplementedError(type_, value)
def compare_values(interpreter_value: dslx_value.Value, jit_value: ir_value.Value) -> None: """Asserts equality between a DSLX Value and an IR Value. Recursively traverses the values (for arrays/tuples) and makes assertions about value and length properties. Args: interpreter_value: Value that resulted from DSL interpretation. jit_value: Value that resulted from JIT-compiled execution. Raises: JitMiscompareError: If the dslx_value and jit_value are not equivalent. UnsupportedJitConversionError: If there is not JIT-supported type equivalent for the interpreter value. """ if interpreter_value.is_bits() or interpreter_value.is_enum(): assert jit_value.is_bits(), f'Expected bits value: {jit_value!r}' jit_value = jit_value.get_bits() bit_count = interpreter_value.get_bit_count() if bit_count != jit_value.bit_count(): raise JitMiscompareError(f'Inconsistent bit counts for value -- ' f'interp: {bit_count}, ' f'jit: {jit_value.bit_count()}') if interpreter_value.is_ubits(): interpreter_bits_value = interpreter_value.get_bits_value() jit_bits_value = bits_to_int(jit_value, signed=False) else: interpreter_bits_value = interpreter_value.get_bits_value_signed() jit_bits_value = bits_to_int(jit_value, signed=True) if interpreter_bits_value != jit_bits_value: raise JitMiscompareError( 'Inconsistent bit values in return value -- ' 'interp: {!r}, jit: {!r}'.format(interpreter_bits_value, jit_bits_value)) elif interpreter_value.is_array(): assert jit_value.is_array(), f'Expected array value: {jit_value!r}' interpreter_values = interpreter_value.array_payload.elements jit_values = jit_value.get_elements() interp_len = len(interpreter_values) jit_len = len(jit_values) if interp_len != jit_len: raise JitMiscompareError( f'Inconsistent array lengths in return value -- ' f'interp: {interp_len}, jit: {jit_len}') for interpreter_element, jit_element in zip(interpreter_values, jit_values): compare_values(interpreter_element, jit_element) elif interpreter_value.is_tuple(): assert jit_value.is_tuple(), 'Expected tuple value: {jit_value!r}' interpreter_values = interpreter_value.tuple_members jit_values = jit_value.get_elements() interp_len = len(interpreter_values) jit_len = len(jit_values) if interp_len != jit_len: raise JitMiscompareError( f'Inconsistent tuple lengths in return value -- ' f'interp: {interp_len}, jit: {jit_len}') for interpreter_element, jit_element in zip(interpreter_values, jit_values): compare_values(interpreter_element, jit_element) else: raise UnsupportedJitConversionError( 'No JIT-supported type equivalent: {}'.format(interpreter_value))