Esempio n. 1
0
def visualize(files):
    output = []
    for fn in parallel_objects(files, njobs=-1):
        pf = load(fn)
        for field in FIELDS:
            slc = SlicePlot(pf, 'z', field)
            output.append(slc.save(fn.replace('.h5', '_%s.png' % field))[0])
    return output
Esempio n. 2
0
def visualize(files):
    output = []
    for fn in parallel_objects(files, njobs=-1):
        pf = load(fn)
        for field in FIELDS:
            slc = SlicePlot(pf, 'z', field)
            output.append(slc.save(fn.replace('.h5', '_%s.png' % field))[0])
    return output
Esempio n. 3
0
def visualize(files):
    output = []
    for fn in parallel_objects(files, njobs=-1):
        pf = load(fn)
        for field in FIELDS:
            slc = SlicePlot(pf, 'z', field)
            if field == 'curz':
                slc.set_cmap(field, 'bwr')
                maxabs = abs(slc._frb[field]).max()
                slc.set_log(field, False)
                slc.set_zlim(field, -maxabs, maxabs)
            output.append(slc.save(fn.replace('.h5', '_%s.png' % field))[0])
    return output
xc = map(np.float64,args.x)
zc = map(np.float64,args.z)

my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap', ct.p05)

h  = 0.146484375
phi = 0.5

c1 = np.array([xc[0], phi, zc[0]])
c2 = np.array([xc[1], phi, zc[1]])
patch1 = [c1[0] - h, c1[0] + h, c1[2]-h, c1[2]+h]
patch2 = [c2[0] - h, c2[0] + h, c2[2]-h, c2[2]+h]
vmin = 0.0
vmax = 0.1 * 0.2
first_pass = True
for fn in parallel_objects(args.files, njobs=-1):
   pf = load(fn)
   field = "dend"
   le = pf.domain_left_edge * pf['au']
   re = pf.domain_right_edge * pf['au']
   s = pf.h.slice(1, phi, fields=["dend"])
   # = pf.h.proj(1, 'dend')
   #fac = pf['au'] / (2.0 * pf['dend'] * np.pi)
   fac = 1./pf['dend']
   if first_pass:
      c1 /= pf.units['au']
      c2 /= pf.units['au']

   ext = [ le[0], re[0], le[2], re[2] ]
   fig = plt.figure(0, figsize=(14,10))
   fig.clf()