def getUVFaceNormal( facepath ): uvs = getWindingOrder(facepath) if len(uvs) < 3: return (1,0,0) #if there are less than 3 uvs we have no uv area so bail #get edge vectors and cross them to get the uv face normal uvAPos = cmd.polyEditUV(uvs[0], query=True, uValue=True, vValue=True) uvBPos = cmd.polyEditUV(uvs[1], query=True, uValue=True, vValue=True) uvCPos = cmd.polyEditUV(uvs[2], query=True, uValue=True, vValue=True) uvAB = Vector( [uvBPos[0]-uvAPos[0], uvBPos[1]-uvAPos[1], 0] ) uvBC = Vector( [uvCPos[0]-uvBPos[0], uvCPos[1]-uvBPos[1], 0] ) uvNormal = uvAB.cross( uvBC ).normalize() return uvNormal
def getJointSizeAndCentre( joints, threshold=0.65, space=SPACE_OBJECT ): ''' minor modification to the getJointSize function in rigging.utils - uses the child of the joint[ 0 ] (if any exist) to determine the size of the joint in the axis aiming toward ''' centre = Vector.Zero( 3 ) if not isinstance( joints, (list, tuple) ): joints = [ joints ] joints = [ str( j ) for j in joints if j is not None ] if not joints: return Vector( (1, 1, 1) ) size, centre = rigUtils.getJointSizeAndCentre( joints, threshold, space ) if size.within( Vector.Zero( 3 ), 1e-2 ): while threshold > 1e-2: threshold *= 0.9 size, centre = rigUtils.getJointSizeAndCentre( joints, threshold ) if size.within( Vector.Zero( 3 ), 1e-2 ): size = Vector( (1, 1, 1) ) children = listRelatives( joints[ 0 ], pa=True, type='transform' ) if children: childPos = Vector( [ 0.0, 0.0, 0.0 ] ) childPosMag = childPos.get_magnitude() for child in children: curChildPos = Vector( xform( child, q=True, ws=True, rp=True ) ) - Vector( xform( joints[ 0 ], q=True, ws=True, rp=True ) ) curChildPosMag = curChildPos.get_magnitude() if curChildPosMag > childPosMag: childPos = curChildPos childPosMag = curChildPosMag axis = rigUtils.getObjectAxisInDirection( joints[ 0 ], childPos, DEFAULT_AXIS ) axisValue = getAttr( '%s.t%s' % (children[ 0 ], axis.asCleanName()) ) if space == SPACE_WORLD: axis = Axis.FromVector( childPos ) size[ axis % 3 ] = abs( axisValue ) centre[ axis % 3 ] = axisValue / 2.0 return size, centre
def getAlignedBoundsForJoint( joint, threshold=0.65, onlyVisibleMeshes=True ): ''' looks at the verts the given joint/s and determines a local space (local to the first joint in the list if multiple are given) bounding box of the verts, and positions the hitbox accordingly if onlyVisibleMeshes is True, then only meshes that are visible in the viewport will contribute to the bounds ''' theJoint = joint verts = [] #so this is just to deal with the input arg being a tuple, list or string. you can pass in a list #of joint names and the verts affected just get accumulated into a list, and the resulting bound #should be the inclusive bounding box for the given joints if isinstance( joint, (tuple,list) ): theJoint = joint[0] for joint in joint: verts += jointVertsForMaya( joint, threshold, onlyVisibleMeshes ) else: verts += jointVertsForMaya( joint, threshold, onlyVisibleMeshes ) jointDag = apiExtensions.asMDagPath( theJoint ) jointMatrix = jointDag.inclusiveMatrix() vJointPos = OpenMaya.MTransformationMatrix( jointMatrix ).rotatePivot( OpenMaya.MSpace.kWorld ) + OpenMaya.MTransformationMatrix( jointMatrix ).getTranslation( OpenMaya.MSpace.kWorld ) vJointPos = Vector( [vJointPos.x, vJointPos.y, vJointPos.z] ) vJointBasisX = OpenMaya.MVector(-1,0,0) * jointMatrix vJointBasisY = OpenMaya.MVector(0,-1,0) * jointMatrix vJointBasisZ = OpenMaya.MVector(0,0,-1) * jointMatrix bbox = OpenMaya.MBoundingBox() for vert in verts: #get the position relative to the joint in question vPos = Vector( xform(vert, query=True, ws=True, t=True) ) vPos = vJointPos - vPos #now transform the joint relative position into the coordinate space of that joint #we do this so we can get the width, height and depth of the bounds of the verts #in the space oriented along the joint vPosInJointSpace = Vector( (vPos.x, vPos.y, vPos.z) ) vPosInJointSpace = vPosInJointSpace.change_space( vJointBasisX, vJointBasisY, vJointBasisZ ) bbox.expand( OpenMaya.MPoint( *vPosInJointSpace ) ) minB, maxB = bbox.min(), bbox.max() return minB[0], minB[1], minB[2], maxB[0], maxB[1], maxB[2]
def setup( self, axis=None ): ''' sets up the initial state of the pair node ''' if axis: axis = abs( Axis( axis ) ) setAttr( '%s.axis' % self.node, axis ) #if we have two controls try to auto determine the orientAxis and the flipAxes if self.controlA and self.controlB: worldMatrixA = getWorldRotMatrix( self.controlA ) worldMatrixB = getWorldRotMatrix( self.controlB ) #so restPoseB = restPoseA * offsetMatrix #restPoseAInv * restPoseB = restPoseAInv * restPoseA * offsetMatrix #restPoseAInv * restPoseB = I * offsetMatrix #thus offsetMatrix = restPoseAInv * restPoseB offsetMatrix = worldMatrixA.inverse() * worldMatrixB AXES = AX_X.asVector(), AX_Y.asVector(), AX_Z.asVector() flippedAxes = [] for n in range( 3 ): axisNVector = Vector( offsetMatrix[ n ][ :3 ] ) #if the axes are close to being opposite, then consider it a flipped axis... if axisNVector.dot( AXES[n] ) < -0.8: flippedAxes.append( n ) for n, flipAxes in enumerate( self.FLIP_AXES ): if tuple( flippedAxes ) == flipAxes: setAttr( '%s.flipAxes' % self.node, n ) break #this is a bit of a hack - and not always true, but generally singular controls built by skeleton builder will work with this value elif self.controlA: setAttr( '%s.flipAxes' % self.node, 0 ) self.setWorldSpace( False )
def __init__( self, x, y, z, vertIdx=None ): Vector.__init__(self, [x, y, z]) self.id = vertIdx
def findVertsInVolume(meshes, volume): ''' returns a dict containing meshes and the list of vert attributes contained within the given <volume> ''' #define a super simple vector class to additionally record vert id with position... class VertPos(Vector): def __init__(self, x, y, z, vertIdx=None): Vector.__init__(self, [x, y, z]) self.id = vertIdx #this dict provides the functions used to determine whether a point is inside a volume or not insideDeterminationMethod = { ExportManager.kVOLUME_SPHERE: isPointInSphere, ExportManager.kVOLUME_CUBE: isPointInCube } #if there are any uniform overrides for the contained method (called if the volume's scale is #unity) it can be registered here insideDeterminationIfUniform = { ExportManager.kVOLUME_SPHERE: isPointInUniformSphere, ExportManager.kVOLUME_CUBE: isPointInCube } #grab any data we're interested in for the volume volumePos = Vector(cmd.xform(volume, q=True, ws=True, rp=True)) volumeScale = map(abs, cmd.getAttr('%s.s' % volume)[0]) volumeBasis = rigUtils.getObjectBasisVectors(volume) #make sure the basis is normalized volumeBasis = [v.normalize() for v in volumeBasis] #now lets determine the volume type type = ExportManager.kVOLUME_SPHERE try: type = int(cmd.getAttr('%s.exportVolume' % volume)) except TypeError: pass isContainedMethod = insideDeterminationMethod[type] print 'method for interior volume determination', isContainedMethod.__name__ sx = volumeScale[0] if Vector(volumeScale).within((sx, sx, sx)): try: isContainedMethod = insideDeterminationIfUniform[type] except KeyError: pass #now lets iterate over the geometry meshVertsWithin = {} for mesh in meshes: #its possible to pass not a mesh but a component in - this is totally valid, as the polyListComponentConversion #should make sure we're always dealing with verts no matter what, but we still need to make sure the dict key is #the actual name of the mesh - hence this bit of jiggery pokery dotIdx = mesh.rfind('.') meshName = mesh if dotIdx == -1 else mesh[:dotIdx] meshPositions = [] meshVertsWithin[meshName] = meshPositions #this gives us a huge list of floats - each sequential triple is the position of a vert try: #if this complains its most likely coz the geo is bad - so skip it... vertPosList = cmd.xform(cmd.ls(cmd.polyListComponentConversion( mesh, toVertex=True), fl=True), q=True, t=True, ws=True) except TypeError: continue count = len(vertPosList) / 3 for idx in xrange(count): pos = VertPos(vertPosList.pop(0), vertPosList.pop(0), vertPosList.pop(0), idx) contained = isContainedMethod(pos, volumePos, volumeScale, volumeBasis) if contained: pos.weight = contained[1] meshPositions.append(pos) return meshVertsWithin
def _asPy( self ): return Vector( (self.x, self.y, self.z) )
def __asNice( self ): return Vector( [self.x, self.y, self.z] )
def mirrorMatrix(self, matrix): matrix = mirrorMatrix(matrix, self.getAxis()) for flipAxis in self.getFlips(): matrix.setRow(flipAxis, -Vector(matrix.getRow(flipAxis))) return matrix
def buildControl( name, placementDesc=DEFAULT_PLACE_DESC, pivotModeDesc=PivotModeDesc.MID, shapeDesc=DEFAULT_SHAPE_DESC, colour=DEFAULT_COLOUR, constrain=True, oriented=True, offset=Vector( (0, 0, 0) ), offsetSpace=SPACE_OBJECT, size=Vector( (1, 1, 1) ), scale=1.0, autoScale=False, parent=None, qss=None, asJoint=False, freeze=True, lockAttrs=( 'scale', ), hideAttrs=DEFAULT_HIDE_ATTRS, niceName=None, displayLayer=None ): ''' this rather verbosely called function deals with creating control objects in a variety of ways. the following args take "struct" like instances of the classes defined above, so look to them for more detail on defining those options displayLayer (int) will create layers (if doesn't exist) and add control shape to that layer. layer None or zero doesn't create. ''' select( cl=True ) #sanity checks... if not isinstance( placementDesc, PlaceDesc ): if isinstance( placementDesc, (list, tuple) ): placementDesc = PlaceDesc( *placementDesc ) else: placementDesc = PlaceDesc( placementDesc ) if not isinstance( shapeDesc, ShapeDesc ): if isinstance( shapeDesc, (list, tuple) ): shapeDesc = ShapeDesc( *shapeDesc ) else: shapeDesc = ShapeDesc( shapeDesc ) offset = Vector( offset ) #if we've been given a parent, cast it to be an MObject so that if its name path changes (for example if #parent='aNode' and we create a control called 'aNode' then the parent's name path will change to '|aNode' - yay!) if parent: parent = asMObject( parent ) #unpack placement objects place, align, pivot = placementDesc.place, placementDesc.align, placementDesc.pivot if shapeDesc.surfaceType == ShapeDesc.SKIN: shapeDesc.curveType = ShapeDesc.NULL_SHAPE #never build curve shapes if the surface type is skin if shapeDesc.joints is None: shapeDesc.joints = [ str( place ) ] shapeDesc.expand *= scale #determine auto scale/size - if nessecary if autoScale: _scale = list( getJointSize( [ place ] + (shapeDesc.joints or []) ) ) _scale = sorted( _scale )[ -1 ] if abs( _scale ) < 1e-2: print 'AUTO SCALE FAILED', _scale, name, place _scale = scale scale = _scale if size is AUTO_SIZE: tmpKw = {} if oriented else { 'space': SPACE_WORLD } size = getJointSize( [ place ] + (shapeDesc.joints or []), **tmpKw ) for n, v in enumerate( size ): if abs( v ) < 1e-2: size[ n ] = scale scale = 1.0 #if we're doing a SKIN shape, ensure there is actually geometry skinned to the joints, otherwise bail on the skin and change to the default type if shapeDesc.surfaceType == ShapeDesc.SKIN: try: #loop over all joints and see if there is geo skinned to it for j in shapeDesc.joints: verts = meshUtils.jointVerts( j, tolerance=DEFAULT_SKIN_EXTRACTION_TOLERANCE ) #if so throw a breakException to bail out of the loop if verts: raise BreakException #if we get this far that means none of the joints have geo skinned to them - so set the surface and curve types to their default values shapeDesc.surfaceType = shapeDesc.curveType = ShapeDesc.DEFAULT_TYPE print 'WARNING - surface type was set to SKIN, but no geometry is skinned to the joints: %s' % shapeDesc.joints except BreakException: pass #build the curve shapes first if shapeDesc.curveType != ShapeDesc.NULL_SHAPE \ and shapeDesc.curveType != ShapeDesc.SKIN: curveShapeFile = getFileForShapeName( shapeDesc.curveType ) assert curveShapeFile is not None, "cannot find shape %s" % shapeDesc.curveType createCmd = ''.join( curveShapeFile.read() ) mel.eval( createCmd ) else: select( group( em=True ) ) sel = ls( sl=True ) obj = asMObject( sel[ 0 ] ) #now to deal with the surface - if its different from the curve, then build it if shapeDesc.surfaceType != shapeDesc.curveType \ and shapeDesc.surfaceType != ShapeDesc.NULL_SHAPE \ and shapeDesc.surfaceType != ShapeDesc.SKIN: #if the typesurface is different from the typecurve, then first delete all existing surface shapes under the control shapesTemp = listRelatives( obj, s=True, pa=True ) for s in shapesTemp: if nodeType( s ) == "nurbsSurface": delete( s ) #now build the temporary control surfaceShapeFile = getFileForShapeName( shapeDesc.surfaceType ) assert surfaceShapeFile is not None, "cannot find shape %s" % shapeDesc.surfaceType createCmd = ''.join( surfaceShapeFile.read() ) mel.eval( createCmd ) #and parent its surface shape nodes to the actual control, and then delete it tempSel = ls( sl=True ) shapesTemp = listRelatives( tempSel[0], s=True, pa=True ) or [] for s in shapesTemp: if nodeType(s) == "nurbsSurface": cmd.parent( s, obj, add=True, s=True ) delete( tempSel[ 0 ] ) select( sel ) #if the joint flag is true, parent the object shapes under a joint instead of a transform node if asJoint: select( cl=True ) j = joint() for s in listRelatives( obj, s=True, pa=True ) or []: cmd.parent( s, j, add=True, s=True ) setAttr( '%s.radius' % j, keyable=False ) setAttr( '%s.radius' % j, cb=False ) delete( obj ) obj = asMObject( j ) setAttr( '%s.s' % obj, scale, scale, scale ) #rename the object - if no name has been given, call it "control". if there is a node with the name already, get maya to uniquify it if not name: name = 'control' if objExists( name ): name = '%s#' % name rename( obj, name ) #move the pivot - if needed makeIdentity( obj, a=1, s=1 ) shapeStrs = getShapeStrs( obj ) if pivotModeDesc == PivotModeDesc.TOP: for s in shapeStrs: move( 0, -scale/2.0, 0, s, r=True ) elif pivotModeDesc == PivotModeDesc.BASE: for s in shapeStrs: move( 0, scale/2.0, 0, s, r=True ) #rotate it accordingly rot = AXIS_ROTATIONS[ shapeDesc.axis ] rotate( rot[0], rot[1], rot[2], obj, os=True ) makeIdentity( obj, a=1, r=1 ) #if the user wants the control oriented, create the orientation group and parent the control grp = obj if oriented: grp = group( em=True, n="%s_space#" % obj ) cmd.parent( obj, grp ) attrState( grp, ['s', 'v'], *LOCK_HIDE ) if align is not None: delete( parentConstraint( align, grp ) ) #place and align if place: delete( pointConstraint( place, grp ) ) if align: delete( orientConstraint( align, grp ) ) else: rotate( 0, 0, 0, grp, a=True, ws=True ) #do the size scaling... if shapeDesc.surfaceType != ShapeDesc.SKIN: for s in getShapeStrs( obj ): cmd.scale( size[0], size[1], size[2], s ) #if the parent exists - parent the new control to the given parent if parent is not None: grp = cmd.parent( grp, parent )[0] #do offset for s in getShapeStrs( obj ): mkw = { 'r': True } if offsetSpace == SPACE_OBJECT: mkw[ 'os' ] = True elif offsetSpace == SPACE_LOCAL: mkw[ 'ls' ] = True elif offsetSpace == SPACE_WORLD: mkw[ 'ws' ] = True if offset: move( offset[0], offset[1], offset[2], s, **mkw ) if freeze: makeIdentity( obj, a=1, r=1 ) makeIdentity( obj, a=1, t=1 ) #always freeze translations #delete shape data that we don't want if shapeDesc.curveType is None: for s in listRelatives( obj, s=True, pa=True ) or []: if nodeType(s) == "nurbsCurve": delete(s) if shapeDesc.surfaceType is None: for s in listRelatives( obj, s=True, pa=True ) or []: if nodeType(s) == "nurbsSurface": delete(s) #now snap the pivot to alignpivot object if it exists if pivot is not None and objExists( pivot ): p = placementDesc.pivotPos move( p[0], p[1], p[2], '%s.rp' % obj, '%s.sp' % obj, a=True, ws=True, rpr=True ) #constrain the target object to this control? if constrain: #check to see if the transform is constrained already - if so, bail. buildControl doesn't do multi constraints if not listConnections( pivot, d=0, type='constraint' ): if place: parentConstraint( obj, pivot, mo=True ) setItemRigControl( pivot, obj ) #if the user has specified skin geometry as the representation type, then build the geo #NOTE: this really needs to happen after ALL the placement has happened otherwise the extracted #will be offset from the surface its supposed to be representing if shapeDesc.surfaceType == ShapeDesc.SKIN: #extract the surface geometry geo = meshUtils.extractMeshForJoints( shapeDesc.joints, expand=shapeDesc.expand ) #if the geo is None, use the default control representation instead writeTrigger = True if geo is None: writeTrigger = False curveShapeFile = getFileForShapeName( ShapeDesc.DEFAULT_TYPE ) createCmd = ''.join( curveShapeFile.read() ) mel.eval( createCmd ) geo = ls( sl=True )[ 0 ] geo = cmd.parent( geo, obj )[0] makeIdentity( geo, a=True, s=True, r=True, t=True ) cmd.parent( listRelatives( geo, s=True, pa=True ), obj, add=True, s=True ) delete( geo ) #when selected, turn the mesh display off, and only highlight edges if writeTrigger: triggered.Trigger.CreateTrigger( str( obj ), cmdStr="for( $s in `listRelatives -s -pa #` ) setAttr ( $s +\".displayEdges\" ) 2;" ) #build a shader for the control if colour is not None: colours.setObjShader( obj, colours.getShader( colour, True ) ) #add to a selection set if desired if qss is not None: sets( obj, add=qss ) #hide and lock attributes attrState( obj, lockAttrs, lock=True ) attrState( obj, hideAttrs, show=False ) if niceName: setNiceName( obj, niceName ) # display layer if displayLayer and not int( displayLayer ) <= 0 : layerName = 'ctrl_%d' % int( displayLayer ) allLayers = ls( type='displayLayer' ) layer = '' if layerName in allLayers: layer = layerName else: layer = createDisplayLayer( n=layerName, number=1, empty=True ) setAttr( '%s.color' % layer, 24 + int( displayLayer ) ) for s in listRelatives( obj, s=True, pa=True ) or []: connectAttr( '%s.drawInfo.visibility' % layer, '%s.v' % s ) connectAttr( '%s.drawInfo.displayType' % layer, '%s.overrideDisplayType' % s ) return obj
def getLocation( self, obj ): if obj is None: return Vector() return xform( obj, q=True, ws=True, rp=True )