import torch.utils.data import NumericalDataLoad import Discriminator db = NumericalDataLoad.NumericalData('Tesla.csv', 6) train = torch.utils.data.DataLoader(db, batch_size=32, shuffle=True) a = next(iter(train)) t = torch.randn(2, 6) model = Discriminator.BaseDiscriminator(6) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) criterion = torch.nn.MSELoss() out1 = model(a[0]) loss = criterion(out1, a[1]) loss.backward() optimizer.step() print(loss)