コード例 #1
0
ファイル: Word.py プロジェクト: nathanbreitsch/Navigator
 def testPeriodic(self):
     #first decide whether the transpositions compose to an element of G
     netTrans = self.netTransposition()
     if not self.system.invariant(netTrans):
         return False
     #next compose the time map with the preserving permutation
     Fmap = AffineMap.compose(netTrans.mapRepresentation(), self.map)
     #construct the set of constraints for fixed point
     A1 = add(Fmap.A, -1.0 * AffineMap.identity(self.system.dim).A)
     A2 = add(AffineMap.identity(self.system.dim).A, -1 * Fmap.A)
     b2 = Fmap.b
     b1 = -1.0 * b2
     A = concatenate((A1,A2))
     b = concatenate((b1,b2))
     cs = ConvexSet(A,b)
     FixedPoints = cs.intersect(cs, self.set())
     #test feasibility
     solution = cvxSolver.solve(FixedPoints)
     return (solution['status']=='optimal')
コード例 #2
0
ファイル: Word.py プロジェクト: nathanbreitsch/Navigator
 def deserialize(representation):
     sequence = []
     for p in representation["sequence"]:
         sequence.append(Permutation.deserialize(p))
     newWord = Word(sequence)
     newWord.flips = representation["flips"]
     newWord.feasible = representation["feasible"]
     newWord.map = AffineMap.deserialize(representation["map"])
     newWord.set = ConvexSet.deserialize(representation["set"])
     return newWord
コード例 #3
0
ファイル: Navigator.py プロジェクト: nathanbreitsch/Navigator
 def testStrictPeriodic(self, word):
     #first decide whether the transpositions compose to identity
     netTrans = word.netTransposition()
     if not netTrans.isIdentity():
         return False
     #next, obtain the full poincare map
     Fmap = word.map
     #construct the set of constraints for fixed point
     A1 = add(Fmap.A, -1.0 * AffineMap.identity(self.system.dim).A)
     A2 = add(AffineMap.identity(self.system.dim).A, -1 * Fmap.A)
     b2 = Fmap.b
     b1 = -1.0 * b2
     A = concatenate((A1, A2))
     b = concatenate((b1, b2))
     cs = ConvexSet(A, b)
     FixedPoints = cs.intersect(cs, word.set())
     #test feasibility
     solution = cvxSolver.solve(FixedPoints)
     return (solution['status']=='optimal')