コード例 #1
0
    def test_0_dataflow_1convlayer(self):
        net = self.streamlined_net.layers
        # make a temp dir for generated HLS
        dirpath = tempfile.mkdtemp()
        # subset of layers for dataflow synthesis -- 1 quantized conv, 1 threshold
        hlslayers = net[3:5]

        def myresalloc(pipeline):
            ret = copy.deepcopy(pipeline)
            # weights matrix is (ofm=50) x (k=5 * k=5 * ifm=20)
            # set simd = 20 for faster sim
            ret[0].simd = 20
            return ret

        ret = be_fpga.synthesize(hlslayers, myresalloc, dirpath)
        hlspipeline = ret.getSimLayer()
        # set up mixed pipeline
        preproc = net[:3]
        postproc = net[5:]
        mixed_net = nn.NN(layers=preproc + hlspipeline + postproc)
        (ok, nok) = testOnMNIST(mixed_net, self.numImagesToTest)
        pm = ret.getFPGAPerformanceModel()
        cost = pm.network_utilisation()
        # remove temp dir
        shutil.rmtree(dirpath)
        # check result correctness
        self.assertTrue(ok == self.ok_golden and nok == self.nok_golden)
        # check BRAM and LUT usage from performance model
        self.assertTrue(cost['luts'] == 164)
        self.assertTrue(cost['brams'] == 16)
コード例 #2
0
 def test_fpgabackend_rawhls(self):
     # resource allocation function to set number of PE/SIMD per layer
     # the allocation is statically determined for this test case.
     def res_alloc_predetermined(pipeline, net, dev):
         ret_pipeline = copy.deepcopy(pipeline)
         layer_simd = [16, 64, 64, 64]
         layer_pe = [64, 64, 64, 10]
         for i in range(4):
             ret_pipeline[i].simd = layer_simd[i]
             ret_pipeline[i].pe = layer_pe[i]
         return ret_pipeline
     # make a temp dir for generated HLS
     dirpath = tempfile.mkdtemp()
     # pick all layers except first (input quantization) and last
     # (final batchnorm) of the streamlined network
     hlslayers = self.streamlined_net.layers[1:-1]
     # call the FPGA backend to generate HLS and compile raw HLS sim
     dev = device.Device('XLNX:PYNQ-Z1.json', 100)
     ret = fpga_backend.synthesize(hlslayers, self.net, dev, res_alloc_predetermined, dirpath, "sfcall-")
     hlspipeline = ret.getSimLayer()
     # build a "mixed pipeline", where the first and last layers are in
     # device-neutral simulation, and everything in the middle is handled
     # by the HLS sim executable
     mixed_pipeline = [self.streamlined_net.layers[0]] + hlspipeline + [self.streamlined_net.layers[-1]]
     # test on MNIST
     (ok, nok) = testOnMNIST(nn.NN(layers=mixed_pipeline), self.numImagesToTest)
     # remove temp dir
     #shutil.rmtree(dirpath)
     self.assertTrue(ok == self.ok_golden and nok == self.nok_golden)
コード例 #3
0
    def test_fpgabackend_rawhls(self):
        # resource allocation function to set number of PE/SIMD per layer
        # the allocation is statically determined for this test case.
        def res_alloc_predetermined(pipeline, net, dev):
            ret_pipeline = copy.deepcopy(pipeline)
            print "PIPELINE: ", ret_pipeline
            net.layers = ret_pipeline
            perfmodel = pm.PerfModel(net, dev)
            fps = perfmodel.maximise_fps()
            for i in range(len(ret_pipeline)):
                ret_pipeline[i].simd = perfmodel.SIMD[i]
                print "SIMD:", ret_pipeline[i].simd
                ret_pipeline[i].pe = perfmodel.PE[i]
                print "PE:", ret_pipeline[i].pe
            return ret_pipeline
            # make a temp dir for generated HLS

        dirpath = tempfile.mkdtemp()
        # pick all layers except first (input quantization) and last
        # (final batchnorm) of the streamlined network
        hlslayers = self.streamlined_net.layers[1:-1]
        # call the FPGA backend to generate HLS and compile raw HLS sim
        print "Synthesising"
        ret = fpga_backend.synthesize(hlslayers, self.net, self.dev,
                                      res_alloc_predetermined, dirpath,
                                      "sfcall-")
        print "Synthesised"
        hlspipeline = ret.getSimLayer()
        # build a "mixed pipeline", where the first and last layers are in
        # device-neutral simulation, and everything in the middle is handled
        # by the HLS sim executable
        mixed_pipeline = [self.streamlined_net.layers[0]] + \
            hlspipeline + [self.streamlined_net.layers[-1]]
        # test on MNIST
        (ok, nok) = testOnMNIST(nn.NN(layers=mixed_pipeline),
                                self.numImagesToTest)
        # remove temp dir
        # shutil.rmtree(dirpath)
        self.assertTrue(ok == self.ok_golden and nok == self.nok_golden)
コード例 #4
0
 def test_streamline_correctness(self):
     (ok, nok) = testOnMNIST(self.streamlined_net, self.numImagesToTest)
     self.assertTrue(ok == self.ok_golden and nok == self.nok_golden)
コード例 #5
0
 def test_import_correctness(self):
     (ok, nok) = testOnMNIST(self.net, self.numImagesToTest)
     self.assertTrue(ok == self.ok_golden and nok == self.nok_golden)