コード例 #1
0
def get_hlt_prescales(runs):
    fn = 'prescales_temp/hltprescales.gzpickle'
    if os.path.isfile(fn):
        return from_pickle(fn)

    prescales = defaultdict(lambda: defaultdict(lambda: defaultdict(set)))
    l = len(runs)
    for i,run in enumerate(runs):
        print 'get_hlt_prescales run %i (%i/%i)' % (run, i+1, l)
        res = lumi_context('hltbyls', {run:None})[run]
        for line in res:
            ls = line[0]
            for hlt_name, prescale, duh, duh2 in line[-1]:
                prescales[hlt_name][prescale][run].add(ls)

    for hlt_name, duh in prescales.iteritems():
        for prescale, duh2 in duh.iteritems():
            for run in duh2:
                duh2[run] = collapse(duh2[run])
            duh[prescale] = dict(duh2)
        prescales[hlt_name] = dict(duh)
    prescales = dict(prescales)

    to_pickle(prescales, fn)
    return prescales
コード例 #2
0
 def strip(cls, fn, new_fn):
     lls = from_pickle(fn, comp=True)
     for ll in lls:
         del ll.time
         del ll.beam_status
         del ll.energy
     to_pickle(lls, new_fn, comp=True)
コード例 #3
0
def get_hlt_prescales(runs):
    fn = 'prescales_temp/hltprescales.gzpickle'
    if os.path.isfile(fn):
        return from_pickle(fn)

    prescales = defaultdict(lambda: defaultdict(lambda: defaultdict(set)))
    l = len(runs)
    for i, run in enumerate(runs):
        print 'get_hlt_prescales run %i (%i/%i)' % (run, i + 1, l)
        res = lumi_context('hltbyls', {run: None})[run]
        for line in res:
            ls = line[0]
            for hlt_name, prescale, duh, duh2 in line[-1]:
                prescales[hlt_name][prescale][run].add(ls)

    for hlt_name, duh in prescales.iteritems():
        for prescale, duh2 in duh.iteritems():
            for run in duh2:
                duh2[run] = collapse(duh2[run])
            duh[prescale] = dict(duh2)
        prescales[hlt_name] = dict(duh)
    prescales = dict(prescales)

    to_pickle(prescales, fn)
    return prescales
コード例 #4
0
 def strip(cls, fn, new_fn):
     lls = from_pickle(fn, comp=True)
     for ll in lls:
         del ll.time
         del ll.beam_status
         del ll.energy
     to_pickle(lls, new_fn, comp=True)
コード例 #5
0
def analyze(plots=False):
    if plots:
        set_style()
        ps = plot_saver(plot_dir('pdfweights', temp=True), size=(600, 600))

    fields = ('nominal', 'plus', 'minus', 'pdfunc', 'rel', 'relavg', 'n16',
              'n84', 'ctl', 'ctlrel', 'ctlrelmd')
    fmt = '%-45s' + ' %10s' * len(fields)
    print fmt % (('sname', ) + fields)

    ss = samples()
    for s in ss:
        f = ROOT.TFile.Open(s.fn)
        s.norm = norm_from_file(f)
        s.w = ac.int_lumi_2018 * 1e-3 / s.norm
        t = f.Get('mfvMiniTree/t')
        hr = draw_hist_register(t, True, True)
        if plots:
            for i in xrange(48, 148):
                h = hr.draw('weights[%i]' % i, 'nvtx>=2', binning='100,0,2')
                ps.save(str(i))

        cut = '(nvtx>=2)'  # '(nvtx>=2 && (gen_x[0]**2 + gen_y[0]**2)**0.5<0.08 && (gen_x[1]**2+gen_y[1]**2)**0.5 < 0.08)'
        h = hr.draw('weight', cut, binning='1,0,1')
        s.nominal, _ = tuple(s.w * x for x in get_integral(h))

        s.pdfunc, s.family = [], []
        for i in xrange(
                46, 148
        ):  # JMTBAD indices into misc_weights are fragile, need to put the pdf weights/info somewhere else than weights
            h = hr.draw('weight',
                        '%s*misc_weights[%i]' % (cut, i),
                        binning='1,0,1')
            v = tuple(s.w * x for x in get_integral(h))[0]
            (s.pdfunc if i < 48 else s.family).append(v)

        s.plus, s.minus = s.pdfunc
        s.pdfunc = abs(s.plus - s.minus) / 2
        s.plus = abs(s.plus - s.nominal)
        s.minus = abs(s.nominal - s.minus)
        s.rel = s.pdfunc / s.nominal

        s.family.sort()
        s.n16, s.n84 = s.family[16], s.family[83]
        s.ctl = (s.n84 - s.n16) / 2
        s.avg = avg(s.family)
        s.rms = rms(s.family)
        s.mdn = (s.family[49] + s.family[50]) / 2
        s.md = (s.n84 + s.n16) / 2
        s.relavg = s.pdfunc / s.avg
        s.ctlrel = s.ctl / s.nominal
        s.ctlrelmd = s.ctl / s.md

        print fmt.replace('%10s', '%10.4f') % (
            (s.name, ) + tuple(getattr(s, fi) for fi in fields))

    to_pickle(ss, 'pdfuncerts.gzpickle')
コード例 #6
0
def get_lumibylses(runs):
    fn = 'prescales_temp/lumibylses.gzpickle'
    if os.path.isfile(fn):
        return from_pickle(fn)

    d = {}
    for run in runs:
        d.update(parse_lumibyls(run))

    to_pickle(d, fn)
    return d
コード例 #7
0
def get_hlt_prescales_collapsed(runs, hlt_prescales=None):
    fn = 'prescales_temp/hltprescales_collapsed.gzpickle'
    if os.path.isfile(fn):
        return from_pickle(fn)

    if hlt_prescales is None:
        hlt_prescales = get_hlt_prescales(runs)
    hlt_prescales_collapsed = collapse_versions(hlt_prescales)

    to_pickle(hlt_prescales_collapsed, fn)
    return hlt_prescales_collapsed
コード例 #8
0
def get_lumibylses(runs):
    fn = 'prescales_temp/lumibylses.gzpickle'
    if os.path.isfile(fn):
        return from_pickle(fn)

    d = {}
    for run in runs:
        d.update(parse_lumibyls(run))

    to_pickle(d, fn)
    return d
コード例 #9
0
def get_hlt_prescales_collapsed(runs, hlt_prescales=None):
    fn = 'prescales_temp/hltprescales_collapsed.gzpickle'
    if os.path.isfile(fn):
        return from_pickle(fn)

    if hlt_prescales is None:
        hlt_prescales = get_hlt_prescales(runs)
    hlt_prescales_collapsed = collapse_versions(hlt_prescales)

    to_pickle(hlt_prescales_collapsed, fn)
    return hlt_prescales_collapsed
コード例 #10
0
def get_menus(runs):
    fn = 'prescales_temp/menus.gzpickle'
    if os.path.isfile(fn):
        return from_pickle(fn)
            
    menus = defaultdict(set)
    for run in runs:
        menu = lumi_context('hltmenu', {run:None})[run]
        for hlt_path, l1_seed, l1_bit in menu:
            assert l1_bit == 'n/a' or l1_seed == l1_bit
        menu = tuple([(hlt_path, l1_seed) for hlt_path, l1_seed, l1_bit in menu])
        menus[menu].add(run)

    to_pickle(menus, fn)
    return menus
コード例 #11
0
def get_menus(runs):
    fn = 'prescales_temp/menus.gzpickle'
    if os.path.isfile(fn):
        return from_pickle(fn)

    menus = defaultdict(set)
    for run in runs:
        menu = lumi_context('hltmenu', {run: None})[run]
        for hlt_path, l1_seed, l1_bit in menu:
            assert l1_bit == 'n/a' or l1_seed == l1_bit
        menu = tuple([(hlt_path, l1_seed)
                      for hlt_path, l1_seed, l1_bit in menu])
        menus[menu].add(run)

    to_pickle(menus, fn)
    return menus
コード例 #12
0
 def save(cls, csv_fn, fn):
     lls = cls.load_csv(csv_fn)
     to_pickle(lls, fn, comp=True)
     return lls
コード例 #13
0
import os

try:
    print 'getting minbias file list from cache'
    from minbias_files import files
except ImportError:
    print 'nope, getting minbias file list from DBS and caching'
    from JMTucker.Tools.DBS import files_in_dataset
    from JMTucker.Tools.general import to_pickle
    files = files_in_dataset('/MinBias_TuneCUETP8M1_13TeV-pythia8/RunIISummer15GS-MCRUN2_71_V1-v2/GEN-SIM')
    to_pickle(files, 'minbias_files.pkl', comp=True)
    open('minbias_files.py', 'wt').write("import cPickle, gzip; files = cPickle.load(gzip.GzipFile('minbias_files.pkl', 'rb'))\n")
コード例 #14
0
 def save(cls, csv_fn, fn):
     lls = cls.load_csv(csv_fn)
     to_pickle(lls, fn, comp=True)
     return lls
コード例 #15
0
def analyze(plots=False):
    if plots:
        set_style()
        ps = plot_saver(plot_dir('scaleweights', temp=True), size=(600, 600))

    fields = ('nominal', 'n16', 'n84', 'ctl', 'ctlrel', 'ctlrelmd')
    fmt = '%-45s' + ' %10s' * len(fields)
    print fmt % (('sname', ) + fields)

    ss = samples()
    for s in ss:
        f = ROOT.TFile.Open(s.fn)
        s.norm = norm_from_file(f)
        s.w = ac.int_lumi_2018 * 1e-3 / s.norm
        t = f.Get('mfvMiniTree/t')
        hr = draw_hist_register(t, True, True)

        weight_str_list = [
            "ren_weight_up", "ren_weight_dn", "fac_weight_up", "fac_weight_dn",
            "ren_weight_up*fac_weight_up", "ren_weight_dn*fac_weight_dn"
        ]

        cut = '(nvtx>=2)'  # '(nvtx>=2 && (gen_x[0]**2 + gen_y[0]**2)**0.5<0.08 && (gen_x[1]**2+gen_y[1]**2)**0.5 < 0.08)'
        h = hr.draw('weight', cut, binning='1,0,1')
        s.nominal, _ = tuple(s.w * x for x in get_integral(h))

        s.scaleunc, s.family = [], []
        for weight_str in weight_str_list:

            # because I didn't pick better names...
            if "ren" in weight_str and "fac" in weight_str:
                weight_name_for_norm = "sum_weight_ren_fac"
            elif "ren" in weight_str:
                weight_name_for_norm = "sum_weight_ren"
            elif "fac" in weight_str:
                weight_name_for_norm = "sum_weight_fac"

            if "_up" in weight_str:
                weight_name_for_norm += "_up"
            elif "_dn" in weight_str:
                weight_name_for_norm += "_dn"

            s.norm = norm_from_file_weight(f, weight_name=weight_name_for_norm)
            s.w = ac.int_lumi_2018 * 1e-3 / s.norm

            h = hr.draw('weight', '%s*%s' % (cut, weight_str), binning='1,0,1')
            v = tuple(s.w * x for x in get_integral(h))[0]
            #print '%s*%s, weight*nvtx==2 = %s' % (cut,weight_str,v)
            s.family.append(v)

        if len(weight_str_list) == 6:
            s.family.sort()
            s.n16, s.n84 = s.family[1], s.family[4]  # since total is 6
            s.ctl = max(abs(s.family[0] - s.nominal),
                        abs(s.family[5] -
                            s.nominal))  # i.e. maximum deviation ==> envelope
            #s.ctl = (s.n84 - s.n16)/2
            s.avg = avg(s.family)
            s.rms = rms(s.family)
            s.mdn = (s.family[2] + s.family[3]) / 2
            s.md = (s.n84 + s.n16) / 2
            #s.relavg = s.scaleunc / s.avg
            if s.nominal == 0:
                print "s.nominal is 0!!!!!!!!!!!!"
                s.nominal = 0.00001
            if s.md == 0:
                print "s.md is 0!!!!!!!!!!!!"
                s.md = 0.00001
            s.ctlrel = s.ctl / s.nominal
            s.ctlrelmd = s.ctl / s.md

            print fmt.replace('%10s', '%10.4f') % (
                (s.name, ) + tuple(getattr(s, fi) for fi in fields))
        else:
            print "invalid weight_str_list!!!!!!!!!!!!!!!!!"

    to_pickle(ss, 'ren_fac.gzpickle')
コード例 #16
0
                    skipped[hlt_path].append(run)
                    continue
                for ls_range in ls_ranges:
                    l1_prescale = l1_prescale_for_run_ls(
                        l1_seed, run, ls_range)
                    total[hlt_path][(hlt_prescale,
                                     l1_prescale)][run].append(ls_range)

    for name, duh in total.iteritems():
        for prescale, duh2 in duh.iteritems():
            duh[prescale] = dict(duh2)
        total[name] = dict(duh)
    total = dict(total)

    if skipped:
        print 'warning: skipped these:'
        pprint(skipped)
    return total


total_prescales = get_total_prescales(hlt_prescales)
total_prescales_by_intlumi = prescales_by_intlumi(total_prescales)

total_prescales_collapsed = collapse_versions(total_prescales)
total_prescales_collapsed_by_intlumi = prescales_by_intlumi(
    total_prescales_collapsed)

for x in 'total_prescales total_prescales_by_intlumi total_prescales_collapsed total_prescales_collapsed_by_intlumi'.split(
):
    to_pickle(eval(x), 'prescales_temp/' + x + '.gzpickle')
コード例 #17
0
        for hlt_prescale, runls in prescales_by_runls.iteritems():
            for run, ls_ranges in runls.iteritems():
                try:
                    l1_seed = l1_seed_for_hlt_path_in_run(hlt_path, run)
                except ValueError:
                    skipped[hlt_path].append(run)
                    continue
                for ls_range in ls_ranges:
                    l1_prescale = l1_prescale_for_run_ls(l1_seed, run, ls_range)
                    total[hlt_path][(hlt_prescale, l1_prescale)][run].append(ls_range)

    for name, duh in total.iteritems():
        for prescale, duh2 in duh.iteritems():
            duh[prescale] = dict(duh2)
        total[name] = dict(duh)
    total = dict(total)

    if skipped:
        print 'warning: skipped these:'
        pprint(skipped)
    return total

total_prescales = get_total_prescales(hlt_prescales)
total_prescales_by_intlumi = prescales_by_intlumi(total_prescales)

total_prescales_collapsed = collapse_versions(total_prescales)
total_prescales_collapsed_by_intlumi = prescales_by_intlumi(total_prescales_collapsed)

for x in 'total_prescales total_prescales_by_intlumi total_prescales_collapsed total_prescales_collapsed_by_intlumi'.split():
    to_pickle(eval(x), 'prescales_temp/' + x + '.gzpickle')
コード例 #18
0
def analyze(plots=False):
    if plots:
        set_style()
        ps = plot_saver(plot_dir('scaleweights', temp=True), size=(600, 600))

    fields = ('nominal', 'n16', 'n84', 'ctl', 'ctlrel', 'ctlrelmd')
    fmt = '%-45s' + ' %10s' * len(fields)
    print fmt % (('sname', ) + fields)

    ss = samples()
    for s in ss:
        f = ROOT.TFile.Open(s.fn)
        s.norm = norm_from_file(f)
        s.w = ac.int_lumi_2018 * 1e-3 / s.norm
        t = f.Get('mfvMiniTree/t')
        hr = draw_hist_register(t, True, True)

        myrange = (14, 46)  # decorrelated variations - recommended!
        #myrange = (6,10) # simple 2x up/down

        if plots:
            for i in xrange(*myrange):
                h = hr.draw('weights[%i]' % i, 'nvtx>=2', binning='100,0,2')
                ps.save(str(i))

        cut = '(nvtx>=2)'  # '(nvtx>=2 && (gen_x[0]**2 + gen_y[0]**2)**0.5<0.08 && (gen_x[1]**2+gen_y[1]**2)**0.5 < 0.08)'
        h = hr.draw('weight', cut, binning='1,0,1')
        s.nominal, _ = tuple(s.w * x for x in get_integral(h))

        s.scaleunc, s.family = [], []
        for i in xrange(
                *myrange
        ):  # JMTBAD indices into misc_weights are fragile, need to put the pdf weights/info somewhere else than weights
            h = hr.draw('weight',
                        '%s*misc_weights[%i]' % (cut, i),
                        binning='1,0,1')
            v = tuple(s.w * x for x in get_integral(h))[0]
            s.family.append(v)

        if myrange == (14, 46):
            s.family.sort()
            s.n16, s.n84 = s.family[5], s.family[27]  # since total is 32
            s.ctl = (s.n84 - s.n16) / 2
            s.avg = avg(s.family)
            s.rms = rms(s.family)
            s.mdn = (s.family[15] + s.family[16]) / 2
            s.md = (s.n84 + s.n16) / 2
            #s.relavg = s.scaleunc / s.avg
            if s.nominal == 0:
                print "s.nominal is 0!!!!!!!!!!!!"
                s.nominal = 0.00001
            if s.md == 0:
                print "s.md is 0!!!!!!!!!!!!"
                s.md = 0.00001
            s.ctlrel = s.ctl / s.nominal
            s.ctlrelmd = s.ctl / s.md

            print fmt.replace('%10s', '%10.4f') % (
                (s.name, ) + tuple(getattr(s, fi) for fi in fields))
        elif myrange == (6, 10):
            s.family.sort()
            s.n16, s.n84 = s.family[1], s.family[2]  # since total is 4
            s.ctl = (s.n84 - s.n16) / 2
            s.avg = avg(s.family)
            s.rms = rms(s.family)
            s.mdn = (s.family[1] + s.family[2]) / 2
            s.md = (s.n84 + s.n16) / 2
            s.ctlrel = s.ctl / s.nominal
            s.ctlrelmd = s.ctl / s.md

            print fmt.replace('%10s', '%10.4f') % (
                (s.name, ) + tuple(getattr(s, fi) for fi in fields))
            print "avg %10.4f, rms %10.4f, rel %10.4f" % (s.avg, s.rms,
                                                          s.rms / s.avg)
        else:
            print "invalid range!!!!!!!!!!!!!!!!!"

    to_pickle(ss, 'alphaS_parton_shower_uncerts.gzpickle')