'incoming_layer_list': [0,], 'incoming_weight_list': [], 'bias': None, 'loss': 'cross_entropy', 'act_func_name': 'softmax', 'value': None, 'layer_type': 'output', 'back_error': 0, 'link2input': None, 'link2target': y_train } } network = NeuralNetwork(n_layers=2, layer_dict = Networklayer_dict) network.fit(batch_size = 1000, learning_rate = step_iterator(0.1,0.01,-0.02), weight_decay = step_iterator(0,0,0), momentum = step_iterator(0.1,0.9,0.1), n_iter = 100, switch_point = 10) y_pred = network.transform(rbm2.transform(rbm1.transform(rbm0.transform(X_test))))[0] correct = np.sum(y_pred.argmax(axis=1) == y_test.argmax(axis=1)) print('correct = %d in %d'%(correct,X_test.shape[0])) network.transform(rbm2.transform(rbm1.transform(rbm0.transform(X_train_copy))))[0] error = network.empirical_error(target = y_train) print('initial error: %f'%error) with open(r"C:\Users\daredavil\Documents\Python Scripts\RBMver2\rbms.pkl",'wb') as file_: pickle.dump((rbm0.hidden_layer.dimension, rbm0.weight_list[0], rbm0.hidden_layer.bias, rbm1.hidden_layer.dimension, rbm1.weight_list[0], rbm1.hidden_layer.bias, rbm2.hidden_layer.dimension, rbm2.weight_list[0], rbm2.hidden_layer.bias, network.output_layer_list[0].incoming_weight_list[0], network.output_layer_list[0].bias), file_) Networklayer_dict = { 0: { 'n_neuron': X.shape[1],
"bias": rbm_list[0].input_layer_list[0].bias, "loss": "mse", "act_func_name": "linear", "value": None, "layer_type": "output", "random_state": random_state, "back_error": 0, "link2target": X_train, }, } network = NeuralNetwork(n_layers=11, layer_dict=Networklayer_dict) network.fit( batch_size=1000, learning_rate=step_iterator(0.1, 0.01, -0.02), weight_decay=step_iterator(0, 0, 0), momentum=step_iterator(0, 0, 0), n_iter=5, switch_point=None, ) network.transform([X_train])[0] hidd_rep_train = network.layer_list[5].value network.transform([X_test])[0] hidd_rep_test = network.layer_list[5].value save_dict["hrtrain"] = hidd_rep_train save_dict["hrtest"] = hidd_rep_test with open("data.pkl", "wb") as f_: cPickle.dump(save_dict, f_)