コード例 #1
0
def MakeCutflowPlot(samples, histograms, save_tag, legend_entries={}):
	c = TCanvas("c_{}".format(save_tag), "c_{}".format(save_tag), 800, 700)
	c.SetBottomMargin(0.2)
	l = TLegend(0.65, 0.55, 0.85, 0.85)
	l.SetFillColor(0)
	l.SetBorderSize(0)

	frame_cutflow = TH1F("frame_cutflow", "frame_cutflow", histograms[samples[0]].GetNbinsX(), histograms[samples[0]].GetXaxis().GetXmin(), histograms[samples[0]].GetXaxis().GetXmax())
	for bin in xrange(1, histograms[samples[0]].GetNbinsX() + 1):
		frame_cutflow.GetXaxis().SetBinLabel(bin, histograms[samples[0]].GetXaxis().GetBinLabel(bin))
	frame_cutflow.GetXaxis().SetNdivisions(frame_cutflow.GetXaxis().GetNbins(), 0, 0, False)
	frame_cutflow.GetYaxis().SetTitle("Fraction of events remaining")
	frame_cutflow.SetMaximum(1.1)
	frame_cutflow.Draw()

	style_counter = 0
	for sample in samples:
		histograms[sample].SetLineColor(seaborn.GetColorRoot("cubehelixlarge", style_counter, len(samples)))
		histograms[sample].SetLineWidth(2)
		histograms[sample].SetLineStyle(1)
		histograms[sample].Draw("hist same")
		if sample in legend_entries:
			l.AddEntry(histograms[sample], legend_entries[sample], "l")
		else:
			l.AddEntry(histograms[sample], sample, "l")
		style_counter += 1
	l.Draw()
	c.SaveAs("/uscms/home/dryu/DAZSLE/data/EventSelection/figures/{}.pdf".format(c.GetName()))
	c.SetLogy()
	c.SaveAs("/uscms/home/dryu/DAZSLE/data/EventSelection/figures/{}_log.pdf".format(c.GetName()))
コード例 #2
0
ファイル: genAnalysis.py プロジェクト: pandolf/HNLsGen
    def saveHistos(self, norm):
        '''
    This is to save the histograms of the sample in a plot
    '''
        if debug: print('Info in Sample.saveHistos()')
        c = TCanvas(self.name, self.name, 800, 600)
        c.DivideSquare(len(self.histos.keys()))

        for i, what in enumerate(self.histos.keys()):
            h = self.histos[what]
            pad = c.cd(i + 1)
            pad.SetLogx(self.histoDefs[what].logX)
            pad.SetLogy(self.histoDefs[what].logY)
            if norm and h.Integral() != 0:
                hdrawn = h.DrawNormalized('LPE')
            else:
                hdrawn = h.Draw('PLE')

            norm_suffix = '_norm' if norm else ''

        c.SaveAs('./plots/' + self.label + suffix + '/' + c.GetName() +
                 norm_suffix + '.png')
        c.SaveAs('./plots/' + self.label + suffix + '/' + c.GetName() +
                 norm_suffix + '.pdf')
        c.SaveAs('./plots/' + self.label + suffix + '/' + c.GetName() +
                 norm_suffix + '.C')
コード例 #3
0
def radialResidualPlots(crossings, shapes, chiSq, dof):
    kBird()
    gStyle.SetOptStat(0)
    components = ('X1', 'Y1', 'X2', 'Y2')
    for shape in shapes:
        for bx in crossings:
            f = TFile.Open('DataAnalysisBunch' + bx + shape +
                           '_new_StronRescale.root')
            if not f:
                continue
            for comp in components:
                dataHist = f.Get('dataHist' + comp)
                modelHist = f.Get('modelHist' + comp)
                nbinsx = dataHist.GetXaxis().GetNbins()
                nbinsy = dataHist.GetYaxis().GetNbins()
                radialDat = TH1D('radialDat_'+shape+bx+comp, '', nbinsx/2, 0.0, \
                                 dataHist.GetXaxis().GetXmax())
                radialMod = TH1D('radialMod_'+shape+bx+comp, '', nbinsx/2, 0.0, \
                                 dataHist.GetXaxis().GetXmax())
                hist = TH1D('radialRes_'+shape+bx+comp, '', nbinsx/2, 0.0, \
                            dataHist.GetXaxis().GetXmax())
                radialDat.Sumw2()
                for xbin in range(nbinsx + 1):
                    for ybin in range(nbinsy + 1):
                        r = (dataHist.GetXaxis().GetBinCenter(xbin)**2 + \
                            dataHist.GetYaxis().GetBinCenter(ybin)**2) ** 0.5
                        radialDat.Fill(r, dataHist.GetBinContent(xbin, ybin))
                        radialMod.Fill(r, modelHist.GetBinContent(xbin, ybin))
                for rbin in range(nbinsx / 2 + 1):
                    err = radialDat.GetBinError(rbin)
                    if err > 0.0:
                        pull = (radialDat.GetBinContent(rbin) - \
                                radialMod.GetBinContent(rbin)) / err
                    else:
                        pull = 0.0
                    hist.SetBinContent(rbin, pull)
                canvas = TCanvas('c_' + hist.GetName(), '', 600, 600)
                hist.Draw('HF')
                canvas.Update()
                hist.SetFillColor(4)
                hist.SetLineColor(1)
                hist.GetXaxis().SetTitle('r [cm]')
                hist.GetXaxis().SetLabelSize(0.025)
                hist.GetYaxis().SetTitle('Pulls')
                hist.GetYaxis().SetLabelSize(0.025)
                hist.GetYaxis().SetTitleOffset(1.1)
                hist.GetYaxis().SetRangeUser(-1.5, 5.0)
                pave = TPaveText(0.15, 0.79, 0.42, 0.88, 'NDC')
                pave.SetTextFont(42)
                pave.SetTextSize(0.025)
                pave.AddText('Scan ' + comp + ', BX ' + bx)
                pave.AddText(shapeNames[shape] + ' fit')
                redChiSq = chiSq[shape][bx] / dof[shape][bx]
                pave.AddText('#chi^{2}/d.o.f. = %6.4f' % (redChiSq))
                pave.Draw('same')
                drawCMS()
                canvas.Modified()
                canvas.Update()
                canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.pdf')
                canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.C')
コード例 #4
0
def evaluateResolutionVariation(model, bcid, prefix, suffix, vtxres, scaling, \
                                legend=False):
    from array import array
    from ROOT import TFile, TMultiGraph, TGraphErrors, gStyle, TCanvas, \
                     TLegend, TLatex

    names = [pre+'_'+model+'_'+bcid+'_'+suf for (pre, suf) in zip(prefix, \
             suffix)]
    xVal = {name: array('d', [0.0]*len(vtxres)) for name in names}
    xErr = {name: array('d', [0.0]*len(vtxres)) for name in names}
    yVal = {name: array('d', [0.0]*len(vtxres)) for name in names}
    yErr = {name: array('d', [0.0]*len(vtxres)) for name in names}

    for name, scale in zip(names, scaling):
        for i, vr in enumerate(vtxres):
            f = TFile('results/'+name+'_'+vr+'.root')
            yVal[name][i] = f.Get('h_overlapInt').GetMean() * 100.0
            yErr[name][i] = f.Get('h_integ').GetMeanError() * 100.0
            xVal[name][i] = f.Get('h_vtxRes').GetMean() * scale * 1.0e4

    multi = TMultiGraph('overlapIntegralBcid'+bcid, '')
    graphs = []
    for i, name in enumerate(names):
        graph = TGraphErrors(len(vtxres), xVal[name], yVal[name], xErr[name], \
                             yErr[name])
        graph.SetName(name)
        graph.SetMarkerStyle(20)
        graph.SetMarkerColor(1+i)
        multi.Add(graph)
        graphs.append(graph)

    gStyle.SetOptStat(0)
    canvas = TCanvas(model+'_'+bcid, '', 600, 600)
    multi.Draw('AP')
    canvas.Update()
    multi.GetXaxis().SetTitle('vertex resolution [#mum]')
    multi.GetXaxis().SetLabelSize(0.025)
    multi.GetXaxis().SetRangeUser(11, 69)
    multi.GetYaxis().SetTitle('overlap integral [a.u.]')
    multi.GetYaxis().SetLabelSize(0.025)
    multi.GetYaxis().SetRangeUser(0.77, 1.43)
    if legend:
        leg = TLegend(0.55, 0.15, 0.88, 0.3)
        leg.SetBorderSize(0)
        for i, name in enumerate(names):
            entry = leg.AddEntry(name, legend[i], 'P')
            entry.SetMarkerStyle(20)
            entry.SetMarkerColor(1+i)
        leg.Draw()
    drawCMS(wip=True)
    text = TLatex()
    text.SetNDC()
    text.SetTextFont(62)
    text.SetTextSize(0.04)
    text.SetTextAlign(21)
    text.DrawLatex(0.5, 0.92, 'Vertex Resolution Study: '+model+', BCID '+bcid)
    canvas.Modified()
    canvas.Update()
    canvas.SaveAs('plots/'+canvas.GetName()+'.pdf')
    canvas.SaveAs('plots/'+canvas.GetName()+'.C')
コード例 #5
0
def correctionPlot(crossings, shapes, overDiff):
    nShapes = len(shapes)
    hist = makeShapesCrossingsHist(crossings, shapes, 'corrections')
    for i, bx in enumerate(crossings):
        for j, shape in enumerate(shapes):
            if overDiff[shape][bx]:
                correction = -100.0 * overDiff[shape][bx]
                hist.SetBinContent(i + 1, nShapes - j, correction)
            else:
                hist.SetBinContent(i + 1, nShapes - j, -1e6)
    canvas = TCanvas('c_' + hist.GetName(), '', 600, 600)
    hist.Draw('TEXTCOLZ')
    canvas.Update()
    hist.GetXaxis().SetNdivisions(len(crossings), False)
    hist.GetYaxis().SetNdivisions(nShapes, False)
    hist.GetZaxis().SetTitle('correction on overlap integral [%]')
    hist.GetZaxis().SetLabelSize(0.025)
    hist.GetZaxis().SetTitleOffset(0.5)
    hist.GetZaxis().SetRangeUser(-1.2, 0.0)
    hist.GetZaxis().CenterTitle()
    hist.GetZaxis().SetNdivisions(1, False)
    palette = hist.GetListOfFunctions().FindObject('palette')
    palette.SetX2NDC(0.929)
    drawCMS()
    canvas.Modified()
    canvas.Update()
    canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.pdf')
    canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.C')
コード例 #6
0
def exampleDataPlot(bx, shape, comp):
    kBird()
    f = TFile.Open('DataAnalysisBunch' + bx + shape + '_new_StronRescale.root')
    if f:
        hist = f.Get('dataHist' + comp)
        hist.SetTitle('')
        hist.SetName(bx + shape + '_dataHist' + comp)
        canvas = TCanvas('c_' + hist.GetName(), '', 600, 600)
        canvas.SetFrameFillColor(0)
        hist.Draw("COLZ")
        canvas.Update()
        hist.GetXaxis().SetTitle('x [cm]')
        hist.GetXaxis().SetLabelSize(0.025)
        hist.GetYaxis().SetTitle('y [cm]')
        hist.GetYaxis().SetLabelSize(0.025)
        hist.GetYaxis().SetTitleOffset(1.3)
        hist.GetZaxis().SetTitle('Number of Vertices')
        hist.GetZaxis().SetLabelSize(0.025)
        hist.GetZaxis().SetTitleOffset(0.7)
        hist.GetZaxis().SetRangeUser(0.0, 240.0)
        hist.GetZaxis().CenterTitle()
        hist.GetZaxis().SetNdivisions(1, False)
        palette = hist.GetListOfFunctions().FindObject('palette')
        palette.SetX2NDC(0.929)
        pave = TPaveText(0.65, 0.82, 0.88, 0.88, 'NDC')
        pave.SetTextFont(42)
        pave.SetTextSize(0.025)
        pave.AddText('Scan ' + comp + ', BX ' + bx)
        pave.AddText('Measured data')
        pave.Draw('same')
        drawCMS()
        canvas.Modified()
        canvas.Update()
        canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.pdf')
        canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.C')
コード例 #7
0
def chiSqPlot(crossings, shapes, chiSq, dof):
    nShapes = len(shapes)
    hist = makeShapesCrossingsHist(crossings, shapes, 'chisq')
    for i, bx in enumerate(crossings):
        for j, shape in enumerate(shapes):
            if chiSq[shape][bx]:
                redChiSq = chiSq[shape][bx] / dof[shape][bx]
                hist.SetBinContent(i + 1, nShapes - j, redChiSq)
    canvas = TCanvas('c_' + hist.GetName(), '', 600, 600)
    hist.Draw('TEXTCOLZ')
    canvas.Update()
    hist.GetXaxis().SetNdivisions(len(crossings), False)
    hist.GetYaxis().SetNdivisions(nShapes, False)
    hist.GetZaxis().SetTitle('#chi^{2} / d.o.f.')
    hist.GetZaxis().SetLabelSize(0.025)
    hist.GetZaxis().SetTitleOffset(0.5)
    hist.GetZaxis().SetRangeUser(1.00, 1.12)
    hist.GetZaxis().CenterTitle()
    hist.GetZaxis().SetNdivisions(1, False)
    palette = hist.GetListOfFunctions().FindObject('palette')
    palette.SetX2NDC(0.929)
    drawCMS()
    canvas.Modified()
    canvas.Update()
    canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.pdf')
    canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.C')
コード例 #8
0
class ViewPane(object):
    nviews = 0

    def __init__(self,
                 name,
                 projection,
                 nx,
                 xmin,
                 xmax,
                 ny,
                 ymin,
                 ymax,
                 dx=600,
                 dy=600):
        self.projection = projection
        tx = 50 + self.__class__.nviews * (dx + 10)
        ty = 50
        self.canvas = TCanvas(name, name, tx, ty, dx, dy)
        TH1.AddDirectory(False)
        self.hist = TH2F(name, name, nx, xmin, xmax, ny, ymin, ymax)
        TH1.AddDirectory(True)
        self.hist.Draw()
        self.hist.SetStats(False)
        self.registered = dict()
        self.locked = dict()
        self.__class__.nviews += 1

    def register(self, obj, layer, clearable=True):
        self.registered[obj] = layer
        if not clearable:
            self.locked[obj] = layer
        #TODO might need to keep track of views in objects

    def clear(self):
        self.registered = dict(self.locked.items())

    def draw(self):
        self.canvas.cd()
        for obj, layer in sorted(self.registered.items(),
                                 key=operator.itemgetter(1)):
            obj.draw(self.projection)
        self.canvas.Update()

    def zoom(self, xmin, xmax, ymin, ymax):
        self.hist.GetXaxis().SetRangeUser(xmin, xmax)
        self.hist.GetYaxis().SetRangeUser(ymin, ymax)
        self.canvas.Update()

    def unzoom(self):
        self.hist.GetXaxis().UnZoom()
        self.hist.GetYaxis().UnZoom()
        self.canvas.Modified()
        self.canvas.Update()

    def save(self, outdir, filetype):
        fname = '{outdir}/{name}.{filetype}'.format(outdir=outdir,
                                                    name=self.canvas.GetName(),
                                                    filetype=filetype)
        self.canvas.SaveAs(fname)
コード例 #9
0
def plot1D():
    """On a TCanvas, plot 1D xsec"""
    outdir = os.path.join(outdir_1D_root, q2wbin)
    if not os.path.isdir(outdir):
        os.makedirs(outdir)

    #cname='1D_q2wbin_%d'%d_q2w['q2wbinnum'].tolist()[0]
    #ctitle='1D:%s'%q2wbin
    cname = ctitle = '1D'
    c1D = TCanvas(cname, ctitle)
    c1D.Divide(3, 3)
    npads = 9
    hname = []
    hname = [
        'h1_1M1',
        'h1_1M2',
        'h1_3M2',  #TODO: h1_1M2->h1_2M2
        'h1_1THETA',
        'h1_2THETA',
        'h1_3THETA',
        'h1_1ALPHA',
        'h1_2ALPHA',
        'h1_3ALPHA'
    ]
    htitle = []
    htitle = [
        VARS_TITLE[0][M1], VARS_TITLE[0][M2], VARS_TITLE[1][M2],
        VARS_TITLE[0][THETA], VARS_TITLE[1][THETA], VARS_TITLE[2][THETA],
        VARS_TITLE[0][ALPHA], VARS_TITLE[1][ALPHA], VARS_TITLE[2][ALPHA]
    ]
    hxtitle = ['GeV', 'GeV', 'GeV', '#circ', '#circ', '#circ']

    activepads = [1, 4, 2]

    EF_UNP_sel = (d_q2w['SEQ'] == EF) & (d_q2w['POL'] == UNP)
    SF_UNP_sel = (d_q2w['SEQ'] == SF) & (d_q2w['POL'] == UNP)
    d_q2w_EF_UNP = d_q2w[EF_UNP_sel]
    d_q2w_SF_UNP = d_q2w[SF_UNP_sel]
    for ipad in range(0, npads):
        if ipad + 1 not in activepads: continue
        c1D.cd(ipad + 1)
        h1_exp = d_q2w_EF_UNP.iloc[0][hname[ipad]]
        h1_sim = d_q2w_SF_UNP.iloc[0][hname[ipad]]

        h1_exp.SetTitle('%s:%s' % (htitle[ipad], q2wbin))
        h1_exp.SetXTitle('%s[%s]' % (htitle[ipad], hxtitle[ipad]))
        h1_sim.SetLineColor(1)

        h1_exp.DrawNormalized("ep", 10000)
        h1_sim.DrawNormalized("ep same", 10000)

    csavename = ('%s/%s') % (outdir, c1D.GetName())
    c1D.SaveAs(('%s.png') % (csavename))
    print('>>>convert %s.png %s.pdf') % (csavename, csavename)
    rc = subprocess.call(
        ['convert', '%s.png' % csavename,
         '%s.pdf' % csavename])
    if rc != 0: print '.png to .pdf failed for %s' % csavename
コード例 #10
0
def MakeBasicPlots(samples, sample_output_files, legend_entries = {}):
	rebin = {
		"h_CA15Jet_msd":5,
	}
	plots_1D = ["h_CA15Jet_msd", "h_CA15Jet_doublecsv", "h_CA15Jet_tau21", "h_CA15Jet_tau32", "h_nminusone_Max_CA15Puppijet0_tau21DDT", "h_nminusone_Min_CA15CHSjet0_doublecsv"]
	plots_2D = ["h_CA15Jet_msd_vs_doublecsv","h_CA15Jet_msd_vs_tau21","h_CA15Jet_msd_vs_tau32","h_CA15Jet_doublecsv_vs_tau21","h_CA15Jet_tau21_vs_tau32"]
	for sample in samples:
		f = TFile(sample_output_files[sample], "READ")
		os.system("mkdir -pv /uscms/home/dryu/DAZSLE/data/EventSelection/figures/CA15_{}/".format(sample))
		for plot in plots_1D:
			h = f.Get(plot)
			if plot in rebin:
				h.Rebin(rebin[plot])
			c = TCanvas("c_{}_{}".format(plot.replace("h_", ""), sample), "c_{}_{}".format(plot.replace("h_", ""), sample), 800, 600)
			h.DrawNormalized()
			c.SaveAs("/uscms/home/dryu/DAZSLE/data/EventSelection/figures/CA15_{}/{}.pdf".format(sample, c.GetName()))
		for plot in plots_2D:
			h = f.Get(plot)
			c = TCanvas("c_{}_{}".format(plot.replace("h_", ""), sample), "c_{}_{}".format(plot.replace("h_", ""), sample), 800, 600)
			h.Draw("colz")
			c.SaveAs("/uscms/home/dryu/DAZSLE/data/EventSelection/figures/CA15_{}/{}.pdf".format(sample, c.GetName()))
		f.Close()

	# All 1D plots on the same canvas
	for plot in plots_1D:
		c = TCanvas("c_{}_all".format(plot.replace("h_", "")), "c_{}_all".format(plot.replace("h_", "")), 800, 600)
		c.SetRightMargin(0.2)
		l = TLegend(0.81, 0.4, 0.99, 0.9)
		l.SetFillColor(0)
		l.SetBorderSize(1)
		style_counter = 0
		for sample in samples:
			f = TFile(sample_output_files[sample], "READ")
			h = f.Get(plot)
			if plot in rebin:
				h.Rebin(rebin[plot])
			h.SetMaximum(h.GetMaximum() * 1.3)
			h.SetName(h.GetName() + "_" + sample)
			h.SetDirectory(0)
			h.SetMarkerColor(seaborn.GetColorRoot("cubehelixlarge", style_counter, len(samples)))
			h.SetMarkerStyle(20 + style_counter)
			h.SetLineColor(seaborn.GetColorRoot("cubehelixlarge", style_counter, len(samples)))
			if style_counter == 0:
				if plot == "h_CA15Jet_msd":
					h.GetXaxis().SetRangeUser(0., 600.)
				h.DrawNormalized("hist")
			h.DrawNormalized("hist same")
			h.DrawNormalized("pe same")
			if sample in legend_entries:
				l.AddEntry(h, legend_entries[sample], "pl")
			else:
				l.AddEntry(h, sample, "pl")
			style_counter += 1
		l.Draw()
		c.SaveAs("/uscms/home/dryu/DAZSLE/data/EventSelection/figures/{}_CA15.pdf".format(c.GetName()))
		c.SetLogy()
		c.SaveAs("/uscms/home/dryu/DAZSLE/data/EventSelection/figures/{}_CA15_log.pdf".format(c.GetName()))
コード例 #11
0
ファイル: signal_cutflow.py プロジェクト: DryRun/PhiBBPlusJet
def MakeCSVEfficiencyPlot(samples, histograms, save_tag, legend_entries={}):
    c = TCanvas("c_{}".format(save_tag), "c_{}".format(save_tag), 800, 600)
    l = TLegend(0.65, 0.55, 0.85, 0.85)
    l.SetFillColor(0)
    l.SetBorderSize(0)

    frame_csv = TH1F("frame_csv", "frame_csv", 100,
                     histograms[samples[0]].GetXaxis().GetXmin(),
                     histograms[samples[0]].GetXaxis().GetXmax())
    frame_csv.GetXaxis().SetTitle("Double b-tag cut")
    frame_csv.GetYaxis().SetTitle("Efficiency")
    frame_csv.SetMaximum(1.1)
    frame_csv.Draw("axis")

    efficiency_tgraphs = {}
    style_counter = 0
    for sample in samples:
        total_events = histograms[sample].Integral(
            0, histograms[sample].GetNbinsX() + 1)
        efficiency_tgraphs[sample] = TGraphErrors(
            histograms[sample].GetNbinsX())
        efficiency_tgraphs[sample].SetName("csv_efficiency_{}".format(sample))
        for bin in xrange(1, histograms[sample].GetNbinsX() + 1):
            pass_events = histograms[sample].Integral(
                bin, histograms[sample].GetNbinsX() + 1)
            efficiency = 1. * pass_events / total_events
            defficiency = max(
                sqrt(efficiency * (1. - efficiency) / total_events),
                1. / total_events)
            efficiency_tgraphs[sample].SetPoint(
                bin - 1, histograms[sample].GetXaxis().GetBinLowEdge(bin),
                efficiency)
            efficiency_tgraphs[sample].SetPointError(bin - 1, 0., defficiency)
        efficiency_tgraphs[sample].SetMarkerStyle(20 + style_counter)
        efficiency_tgraphs[sample].SetMarkerSize(1)
        efficiency_tgraphs[sample].SetMarkerColor(
            seaborn.GetColorRoot("cubehelixlarge", style_counter,
                                 len(samples)))
        efficiency_tgraphs[sample].SetLineStyle(1)
        efficiency_tgraphs[sample].SetLineWidth(1)
        efficiency_tgraphs[sample].SetLineColor(
            seaborn.GetColorRoot("cubehelixlarge", style_counter,
                                 len(samples)))
        efficiency_tgraphs[sample].Draw("pl")
        if sample in legend_entries:
            l.AddEntry(efficiency_tgraphs[sample], legend_entries[sample],
                       "pl")
        else:
            l.AddEntry(efficiency_tgraphs[sample], sample, "pl")
        style_counter += 1
    l.Draw()
    c.SaveAs(
        "/uscms/home/dryu/DAZSLE/data/EventSelection/figures/{}.pdf".format(
            c.GetName()))
コード例 #12
0
def correctedCrossSectionsPlot(crossings, shapes, overDiff):
    uncorrected = {41: (3.2575816286, 0.00514858611944), \
                   281: (3.26316215713, 0.00468789412223), \
                   872: (3.27340775031, 0.00484925398906), \
                   1783: (3.24986926821, 0.00460908436455), \
                   2063: (3.26363843728, 0.0044071069983)}
    multi = TMultiGraph('sigmavis', '')
    graphs = []
    n = len(shapes) + 1
    for i, shape in enumerate([''] + list(shapes)):
        xval = array('d',
                     [a + 0.08 * (i - 0.5 * n) for a in range(len(crossings))])
        xerr = array('d', len(crossings) * [0])
        yval = array('d', [uncorrected[int(bx)][0] for bx in crossings])
        yerr = array('d', [uncorrected[int(bx)][1] for bx in crossings])
        if shape:
            for j, bx in enumerate(crossings):
                yval[j] *= 1 + overDiff[shape][bx]
                yerr[j] *= 1 + overDiff[shape][bx]
        graph = TGraphErrors(len(crossings), xval, yval, xerr, yerr)
        graph.SetName('ge' + shape)
        graph.SetMarkerStyle(20)
        graph.SetMarkerColor(1 + i)
        multi.Add(graph)
        graphs.append(graph)
    gStyle.SetOptStat(0)
    hist = TH2F('hist', '', len(crossings), -0.5,
                len(crossings) - 0.5, 100, 3.23, 3.33)
    for i, bx in enumerate(crossings):
        hist.GetXaxis().SetBinLabel(i + 1, bx)
    canvas = TCanvas('c_' + multi.GetName(), '', 600, 600)
    hist.Draw('AXIS')
    multi.Draw('P')
    canvas.Update()
    hist.GetXaxis().SetLabelSize(0.035)
    hist.GetXaxis().SetNdivisions(len(crossings), False)
    hist.GetYaxis().SetTitle('#sigma_{vis} [b]')
    hist.GetYaxis().SetLabelSize(0.025)
    hist.GetYaxis().SetTitleOffset(1.3)
    leg = TLegend(0.15, 0.82, 0.85, 0.85)
    leg.SetNColumns(len(shapes) + 1)
    leg.SetBorderSize(0)
    for i, shape in enumerate([''] + list(shapes)):
        entry = leg.AddEntry('ge' + shape, shapeNames[shape], 'P')
        entry.SetMarkerStyle(20)
        entry.SetMarkerColor(1 + i)
    leg.Draw()
    drawCMS()
    canvas.Modified()
    canvas.Update()
    canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.pdf')
    canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.C')
コード例 #13
0
def plotR2(seq_pol_sell):
    """On a TCanvas, plot R2 for a list of particular SEQ and POL selections
	
	Keyword arguments:
	seq_pol_sell -- A List of DataFrame selections based on SEQ and POL

	"""
    l = TLine(0, 0, 180, 0)  # will be used for all hR2 objects

    for seq_pol_sel in seq_pol_sell:
        d_q2w_seq_pol = d_q2w[seq_pol_sel]
        #print dq2w_seq_pol
        seq = d_q2w_seq_pol.iloc[0]['SEQ']
        pol = d_q2w_seq_pol.iloc[0]['POL']
        outdir_seq_pol = os.path.join(outdir_q2w, SEQ_NAME[seq],
                                      POLS_NAME[pol])
        if not os.path.isdir(outdir_seq_pol):
            os.makedirs(outdir_seq_pol)

        for pob in range(0, NPOBS):
            if pob == A: continue
            for var in range(0, NVARS):
                if var == PHI or var == ALPHA: continue
                hR2_name = 'hR2_%s_1%s' % (POBS_NAME[pob], VARS_NAME[var])
                hR2 = d_q2w_seq_pol.iloc[0][hR2_name]
                cR2 = TCanvas(hR2_name, hR2_name)
                hR2.SetLineColor(gROOT.ProcessLine("%s" % POLS_COLOR[pol]))
                hR2.SetTitle("")  # will be made "prettier" later
                hR2.Draw("ep")

                #make Title of hR2 "pretty"
                l.Draw("same")
                pt = TPaveText(0.3, 0.85, 0.7, 1.0, "NDC")
                q2wt = pt.AddText('[Q^{2}][W] = %s' % q2wbin)
                q2wt.SetTextColor(gROOT.ProcessLine("kBlue"))
                vart = pt.AddText(
                    ("%s,%s: %s^{%s} vs. %s") %
                    (SEQ_NAME[seq], POLS_NAME[pol], POBS_NAME[pob],
                     VARS_TITLE[0][var], VARS_TITLE[0][var]))
                vart.SetTextSize(0.05)
                pt.Draw()

                csavename = ('%s/%s') % (outdir_seq_pol, cR2.GetName())
                cR2.SaveAs(('%s.png') % (csavename))
                print('>>>convert %s.png %s.pdf') % (csavename, csavename)
                rc = subprocess.call(
                    ['convert',
                     '%s.png' % csavename,
                     '%s.pdf' % csavename])
                if rc != 0: print '.png to .pdf failed for %s' % csavename
コード例 #14
0
def PlotPosteriors(ListOfPosteriors, outputname = ""):
    RepeatIteration = False
    if (outputname != "" ):
        outputname = "_"+outputname
    c = TCanvas("Posteriors"+outputname,"Posteriors"+outputname,0,0,1600, 1600)
    c.Divide(math.ceil(pow(len(ListOfPosteriors),0.5)),math.ceil(pow(len(ListOfPosteriors),0.5)))
    legends = []
    for i in range(len(ListOfPosteriors)):
        ListOfPosteriors[i].SetMaximum(ListOfPosteriors[i].GetMaximum()*2.0)
        #ListOfPosteriors[i].Fit("gaus")
        fit = ListOfPosteriors[i].GetFunction("gaus") 
        chi2 = fit.GetChisquare()
        p1 = fit.GetParameter(1)
        #p0 = fit.GetParameter(0)
        p2 = fit.GetParameter(2)
        FitIntegral = fit.Integral(p1-10*p2,p1+10*p2) # fit integral , get mean plus minus 10 sigma
        PriorIntegral = ListOfPosteriors[i].Integral("width")
        Percentage = round((100*PriorIntegral/FitIntegral),0)
        c.cd(i+1)
        gPad.SetFrameFillColor(10)
        if (Percentage < 90):
            gPad.SetFillColor(kRed-4)
            RepeatIteration = True
        else:
            gPad.SetFillColor(8)
        leg = TLegend(0.1,0.5,0.85,0.9)
        leg.SetFillStyle(0)
        leg.AddEntry(None,"MeanHist = "+str(round(ListOfPosteriors[i].GetMean(),0))+", RMShist = "+str(round(ListOfPosteriors[i].GetRMS(),0))+", MeanFit = "+str(round(p1,0))+", #sigma_{fit} = "+str(round(p2,0)),"")
        leg.AddEntry(ListOfPosteriors[i],"Posterior ","l")
        leg.AddEntry(fit,"Fit ","l")
        leg.AddEntry(None,"#chi^{2}/NDF = "+str(round(chi2/len(ListOfPosteriors),2)),"")
        leg.AddEntry(None,"Integral Prior/Fit = "+str(round(Percentage,0))+" %","")
        leg.SetBorderSize(0)
        legends.append(leg)
        ListOfPosteriors[i].SetTitle("Posterior in bin "+str(i+1))
        gStyle.SetOptStat(0)
        ListOfPosteriors[i].Draw()
        legends[i].Draw("same")
        if (round(chi2/len(ListOfPosteriors),2)) > 20.0:
            RepeatIteration = True
        #c.Update()

    c.cd(1)
    gStyle.SetOptStat(0)
    #gPad.Modified()
    #c.Update()
    PrintCan(c,c.GetName()+"_posteriors")
    return RepeatIteration
コード例 #15
0
def residualPlots(crossings, shapes, chiSq, dof):
    kBird()
    components = ('X1', 'Y1', 'X2', 'Y2')
    for shape in shapes:
        for bx in crossings:
            f = TFile.Open('DataAnalysisBunch' + bx + shape +
                           '_new_StronRescale.root')
            if not f:
                continue
            for comp in components:
                hist = f.Get('res' + comp)
                for xbin in range(hist.GetXaxis().GetNbins() + 1):
                    for ybin in range(hist.GetYaxis().GetNbins() + 1):
                        if hist.GetBinContent(xbin, ybin) < -4.99999:
                            hist.SetBinContent(xbin, ybin, -4.99999)
                        if hist.GetBinContent(xbin, ybin) == 0.0:
                            hist.SetBinContent(xbin, ybin, -10.0)
                hist.SetTitle('')
                hist.SetName(bx + shape + '_res' + comp)
                canvas = TCanvas('c_' + hist.GetName(), '', 600, 600)
                hist.Draw('COLZ')
                canvas.Update()
                hist.GetXaxis().SetTitle('x [cm]')
                hist.GetXaxis().SetLabelSize(0.025)
                hist.GetYaxis().SetTitle('y [cm]')
                hist.GetYaxis().SetLabelSize(0.025)
                hist.GetYaxis().SetTitleOffset(1.3)
                hist.GetZaxis().SetTitle('Pulls')
                hist.GetZaxis().SetLabelSize(0.025)
                hist.GetZaxis().SetTitleOffset(0.9)
                hist.GetZaxis().SetRangeUser(-5.0, 5.0)
                palette = hist.GetListOfFunctions().FindObject('palette')
                palette.SetX2NDC(0.929)
                pave = TPaveText(0.61, 0.79, 0.88, 0.88, 'NDC')
                pave.SetTextFont(42)
                pave.SetTextSize(0.025)
                pave.AddText('Scan ' + comp + ', BX ' + bx)
                pave.AddText(shapeNames[shape] + ' fit')
                redChiSq = chiSq[shape][bx] / dof[shape][bx]
                pave.AddText('#chi^{2}/d.o.f. = %6.4f' % (redChiSq))
                pave.Draw('same')
                drawCMS()
                canvas.Modified()
                canvas.Update()
                canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.pdf')
                canvas.SaveAs('summaryPlots/' + canvas.GetName() + '.C')
コード例 #16
0
def MakeOneDHist(histogramDirectory, histogramName,integrateDir):

    if arguments.verbose:
        print "Creating histogram", histogramName, "in directory", histogramDirectory

    HeaderLabel = TPaveLabel(header_x_left,header_y_bottom,header_x_right,header_y_top,HeaderText,"NDC")
    HeaderLabel.SetTextAlign(32)
    HeaderLabel.SetTextFont(42)
    HeaderLabel.SetTextSize(0.697674)
    HeaderLabel.SetBorderSize(0)
    HeaderLabel.SetFillColor(0)
    HeaderLabel.SetFillStyle(0)

    CMSLabel = TPaveLabel(header_x_left,header_y_bottom,header_x_right,header_y_top,HeaderText,"NDC")
    CMSLabel.SetTextAlign(32)
    CMSLabel.SetTextFont(42)
    CMSLabel.SetTextSize(0.697674)
    CMSLabel.SetBorderSize(0)
    CMSLabel.SetFillColor(0)
    CMSLabel.SetFillStyle(0)

    if makeFancy:
        LumiLabel = TPaveLabel(topLeft_x_left,topLeft_y_bottom,topLeft_x_right,topLeft_y_top,"CMS Preliminary","NDC")
        LumiLabel.SetTextFont(62)
        LumiLabel.SetTextSize(0.7)
        LumiLabel.SetTextAlign(12)
    else:
        LumiLabel = TPaveLabel(topLeft_x_left,topLeft_y_bottom,topLeft_x_right,topLeft_y_top,LumiText,"NDC")
        LumiLabel.SetTextAlign(32)
        LumiLabel.SetTextFont(42)
    LumiLabel.SetBorderSize(0)
    LumiLabel.SetFillColor(0)
    LumiLabel.SetFillStyle(0)

    Legend = TLegend()
    Legend.SetBorderSize(0)
    Legend.SetFillColor(0)
    Legend.SetFillStyle(0)

    canvasName = histogramName
    if integrateDir is "left":
        canvasName += "_CumulativeLeft"
    elif integrateDir is "right":
        canvasName += "_CumulativeRight"
    Canvas = TCanvas(canvasName)
    Histograms = []
    RefIndex = -99
    LegendEntries = []

    colorIndex = 0
    markerStyleIndex = 0
    fillIndex = 0

    for source in input_sources: # loop over different input sources in config file
        dataset_file = "condor/%s/%s.root" % (source['condor_dir'],source['dataset'])
        inputFile = TFile(dataset_file)


        if arguments.generic:
            if histogramDirectory == "":
                histPath = histogramName
            else:
                histPath = histogramDirectory + "/" + histogramName
            HistogramObj = inputFile.Get(histPath)
        else:
            HistogramObj = inputFile.Get(source['channel'] + "Plotter/" + histogramDirectory + "/" + histogramName)
        if not HistogramObj:
            print "WARNING:  Could not find histogram " + source['channel'] + "/" + histogramName + " in file " + dataset_file + ".  Will skip it and continue."
            return
        Histogram = HistogramObj.Clone()
        Histogram.SetDirectory(0)
        inputFile.Close()
        Histogram.Sumw2()
        if arguments.verbose:
            print "  Got histogram", Histogram.GetName(), "from file", dataset_file
        if arguments.rebinFactor:
            RebinFactor = int(arguments.rebinFactor)
            #don't rebin histograms which will have less than 5 bins or any gen-matching histograms
            if Histogram.GetNbinsX() >= RebinFactor*5 and Histogram.GetTitle().find("GenMatch") is -1:
                Histogram.Rebin(RebinFactor)

        # correct bin contents of object multiplcity plots
        if Histogram.GetName().startswith("num") and "PV" not in Histogram.GetName():
            # include overflow bin
            for bin in range(2,Histogram.GetNbinsX()+2):
                content = Histogram.GetBinContent(bin)
                Histogram.SetBinContent(bin, content/float(bin-1))


        xAxisLabel = Histogram.GetXaxis().GetTitle()
        unitBeginIndex = xAxisLabel.find("[")
        unitEndIndex = xAxisLabel.find("]")
        xAxisLabelVar = xAxisLabel

        if "_pfx" in Histogram.GetName() or "_pfy" in Histogram.GetName() or "_sigma" in Histogram.GetName():
            yAxisLabel = Histogram.GetYaxis().GetTitle()
        else:

            if unitBeginIndex is not -1 and unitEndIndex is not -1: #x axis has a unit
                yAxisLabel = "Entries / " + str(Histogram.GetXaxis().GetBinWidth(1)) + " " + xAxisLabel[unitBeginIndex+1:unitEndIndex]
                xAxisLabelVar = xAxisLabel[0:unitBeginIndex]
            else:
                yAxisLabel = "Entries per bin (" + str(Histogram.GetXaxis().GetBinWidth(1)) + " width)"
            if arguments.normalizeToUnitArea:
                yAxisLabel = yAxisLabel + " (Unit Area Norm.)"

            if arguments.normalizeToUnitArea and arguments.makeSignificancePlots:
                unit = "Efficiency"
            else:
                unit = "Yield"
            if integrateDir is "left":
                yAxisLabel = unit + ", " + xAxisLabelVar + "< x (" + str(Histogram.GetXaxis().GetBinWidth(1)) + " bin width)"
            if integrateDir is "right":
                yAxisLabel = unit + ", " + xAxisLabelVar + "> x (" + str(Histogram.GetXaxis().GetBinWidth(1)) + " bin width)"


        nbins = Histogram.GetNbinsX()
        if not noOverFlow:
            Histogram.SetBinContent(nbins, Histogram.GetBinContent(nbins) + Histogram.GetBinContent(nbins+1)) # Add overflow
            Histogram.SetBinError(nbins, math.sqrt(math.pow(Histogram.GetBinError(nbins),2) + math.pow(Histogram.GetBinError(nbins+1),2))) # Set the errors to be the sum in quadrature
        if not noUnderFlow:
            Histogram.SetBinContent(1, Histogram.GetBinContent(1) + Histogram.GetBinContent(0)) # Add underflow
            Histogram.SetBinError(1, math.sqrt(math.pow(Histogram.GetBinError(1), 2) + math.pow(Histogram.GetBinError(0), 2))) # Set the errors to be the sum in quadrature

        if not arguments.makeFancy and not arguments.generic:
            fullTitle = Histogram.GetTitle()
            splitTitle = fullTitle.split(":")
            if len(splitTitle) > 1:
                histoTitle = splitTitle[1].lstrip(" ")
            else:
                histoTitle = splitTitle[0]
        else:
            histoTitle = ""

        if 'color' in source:
            Histogram.SetMarkerColor(colors[source['color']])
            Histogram.SetLineColor(colors[source['color']])
        else:
            Histogram.SetMarkerColor(colors[colorList[colorIndex]])
            Histogram.SetLineColor(colors[colorList[colorIndex]])
            colorIndex = colorIndex + 1
            if colorIndex is len(colorList):
                colorIndex = 0
                markerStyleIndex = markerStyleIndex + 1
                if markerStyleIndex is len(markerStyleList):
                    markerStyleIndex = 0
                    fillIndex = fillIndex + 1


        if 'scale' in source:
            Histogram.Scale(source['scale'])

        markerStyle = 20
        if 'marker' in source:
            markerStyle = markers[source['marker']]
        else:
            markerStyle = markers[markerStyleList[markerStyleIndex]]

        fillStyle = 0
        if 'fill' in source:
            markerStyle = markerStyle + fills[source['fill']]
        else:
            markerStyle = markerStyle + fills[fillList[fillIndex]]

        Histogram.SetMarkerStyle(markerStyle)
        Histogram.SetMarkerSize(0.5)

        Histogram.SetLineWidth(line_width)
        Histogram.SetFillStyle(0)

        if arguments.normalizeToUnitArea and Histogram.Integral() > 0:
            Histogram.Scale(1./Histogram.Integral())

        Histogram = MakeIntegralHist(Histogram, integrateDir)

        LegendEntries.append(source['legend_entry'])
        Histograms.append(Histogram)
        if 'reference' in source:
            if source['reference']:
                RefIndex = len(Histograms)-1

    ### formatting histograms and adding to legend
    legendIndex = 0
    for histogram in Histograms:
        Legend.AddEntry(histogram,LegendEntries[legendIndex],"LEP")
#        Legend.AddEntry(histogram,LegendEntries[legendIndex],"P")
        legendIndex = legendIndex+1

    ### finding the maximum value of anything going on the canvas, so we know how to set the y-axis
    finalMax = 0
    for histogram in Histograms:
        currentMax = histogram.GetMaximum() + histogram.GetBinError(histogram.GetMaximumBin())
        if(currentMax > finalMax):
            finalMax = currentMax
    finalMax = 1.5*finalMax
    if arguments.setYMax:
        finalMax = float(arguments.setYMax)

    ### Drawing histograms to canvas

    makeRatioPlots = arguments.makeRatioPlots
    makeDiffPlots = arguments.makeDiffPlots
    addOneToRatio = -1
    if arguments.addOneToRatio:
        addOneToRatio = arguments.addOneToRatio

    yAxisMin = 0.0001
    if arguments.setYMin:
        yAxisMin = float(arguments.setYMin)

    if makeRatioPlots or makeDiffPlots:
        Canvas.SetFillStyle(0)
        Canvas.Divide(1,2)
        Canvas.cd(1)
        gPad.SetPad(0,0.25,1,1)
        gPad.SetMargin(0.15,0.05,0.01,0.07)
        gPad.SetFillStyle(0)
        gPad.Update()
        gPad.Draw()
        if arguments.setLogY:
            gPad.SetLogy()
        Canvas.cd(2)
        gPad.SetPad(0,0,1,0.25)
        #format: gPad.SetMargin(l,r,b,t)
        gPad.SetMargin(0.15,0.05,0.4,0.01)
        gPad.SetFillStyle(0)
        gPad.SetGridy(1)
        gPad.Update()
        gPad.Draw()

        Canvas.cd(1)

    histCounter = 0
    plotting_options = ""
    if arguments.generic:
        plotting_options = "p,e"
    if arguments.plot_hist:
        plotting_options = "HIST"

    for histogram in Histograms:
        histogram.SetTitle(histoTitle)
        if arguments.verbose:
            print "  Drawing hist " + histogram.GetName() + ", with plotting_options = " + plotting_options + ", with mean = " + str(histogram.GetMean()) + ", with color = " + str(histogram.GetLineColor())
        histogram.Draw(plotting_options)
        histogram.GetXaxis().SetTitle(xAxisLabel)
        histogram.GetYaxis().SetTitle(yAxisLabel)
        histogram.SetMaximum(finalMax)

        if "_pfx" not in Histogram.GetName() and "_pfy" not in Histogram.GetName() and "_sigma" not in Histogram.GetName():
            histogram.SetMinimum(yAxisMin)
        if makeRatioPlots or makeDiffPlots:
            histogram.GetXaxis().SetLabelSize(0)
        if histCounter is 0:
            plotting_options = plotting_options + " SAME"
        histCounter = histCounter + 1

    #legend coordinates, empirically determined :-)
    x_left = 0.1677852
    x_right = 0.9647651
    y_min = 0.6765734
    y_max = 0.9

    Legend.SetX1NDC(x_left)
    Legend.SetY1NDC(y_min)
    Legend.SetX2NDC(x_right)
    Legend.SetY2NDC(y_max)
    Legend.Draw()


    # Deciding which text labels to draw and drawing them
    if arguments.makeFancy:
        HeaderLabel.Draw()
        LumiLabel.Draw()




    #drawing the ratio or difference plot if requested

    if makeRatioPlots or makeDiffPlots:
        Comparisons = []
        Canvas.cd(2)
        if RefIndex == -99:
            Reference = Histograms[0]
        else:
            Reference = Histograms[RefIndex]

        for Histogram in Histograms:
            if Histogram is Reference:
                continue

            if makeRatioPlots:
                makeRatio = functools.partial (ratioHistogram,Histogram, Reference)
                if arguments.ratioRelErrMax is not -1: # it gets initialized to this dummy value of -1
                    makeRatio =  functools.partial (makeRatio, relErrMax = float(arguments.ratioRelErrMax))
                if addOneToRatio != -1: # it gets initialized to this dummy value of -1
                    makeRatio = functools.partial (makeRatio, addOne = bool (addOneToRatio))
                Comparison = makeRatio()
            elif makeDiffPlots:
                Comparison = Reference.Clone("diff")
                Comparison.Add(Histograms[1],-1)
                Comparison.SetTitle("")
                Comparison.GetYaxis().SetTitle("X-ref")

            Comparison.SetLineColor(Histogram.GetLineColor())
            Comparison.SetFillColor(Histogram.GetFillColor())
            Comparison.SetFillStyle(Histogram.GetFillStyle())
            Comparison.SetMarkerColor(Histogram.GetMarkerColor())
            Comparison.SetMarkerStyle(Histogram.GetMarkerStyle())

            Comparison.GetXaxis().SetTitle(xAxisLabel)
            Comparison.GetYaxis().CenterTitle()
            Comparison.GetYaxis().SetTitleSize(0.1)
            Comparison.GetYaxis().SetTitleOffset(0.5)
            Comparison.GetXaxis().SetTitleSize(0.15)
            Comparison.GetYaxis().SetLabelSize(0.1)
            Comparison.GetXaxis().SetLabelSize(0.15)

            if makeRatioPlots:
                RatioYRange = 1.15
                if arguments.ratioYRange:
                    RatioYRange = float(arguments.ratioYRange)
                if addOneToRatio == -1: # it gets initialized to this dummy value of -1
                    Comparison.GetYaxis().SetRangeUser(-1*RatioYRange, RatioYRange)
                else:
                    Comparison.GetYaxis().SetRangeUser(-1*RatioYRange + 1.0, RatioYRange + 1.0)

            elif makeDiffPlots:
                YMax = Comparison.GetMaximum()
                YMin = Comparison.GetMinimum()
                if YMax <= 0 and YMin <= 0:
                    Comparison.GetYaxis().SetRangeUser(-1.2*YMin,0)
                elif YMax >= 0 and YMin >= 0:
                    Comparison.GetYaxis().SetRangeUser(0,1.2*YMax)
                else: #axis crosses y=0
                    if abs(YMax) > abs(YMin):
                        Comparison.GetYaxis().SetRangeUser(-1.2*YMax,1.2*YMax)
                    else:
                        Comparison.GetYaxis().SetRangeUser(-1.2*YMin,1.2*YMin)

            Comparison.GetYaxis().SetNdivisions(205)
            Comparisons.append(Comparison)

        option = "E0"
        for index,Comparison in enumerate(Comparisons):
            if index == 0:
                option += " SAME"
            Comparison.Draw(option)

    outputFile.cd(histogramDirectory)
    Canvas.Write()
    if arguments.verbose:
        print "  Finished writing canvas: ", Canvas.GetName()

    if arguments.savePDFs:
        Canvas.SaveAs("comparison_histograms_pdfs/"+histogramName+".pdf")
コード例 #17
0
			if xs < min_xs:
				min_xs = xs
		xs_graphs[sqrts] = TGraph(len(this_xss))
		for i, mass in enumerate(sorted(this_xss.keys())):
			xs_graphs[sqrts].SetPoint(i, mass, this_xss[mass])

xs_graphs[8].SetMarkerStyle(20)
xs_graphs[8].SetMarkerColor(seaborn_colors.get_root_color("Oranges_d", 1))
xs_graphs[8].SetLineColor(seaborn_colors.get_root_color("Oranges_d", 1))
xs_graphs[13].SetMarkerStyle(22)
xs_graphs[13].SetMarkerColor(seaborn_colors.get_root_color("Blues_d", 3))
xs_graphs[13].SetLineColor(seaborn_colors.get_root_color("Blues_d", 3))

c = TCanvas("c_reference_xses", "Reference #sigma", 800, 600)
c.SetLogy()
frame = TH1F("frame", "frame", 100, 0., 1500.)
frame.GetXaxis().SetTitle("m_{Z'} [GeV]")
frame.GetYaxis().SetTitle("#sigma(pp#rightarrow Z') [pb]")
frame.SetMinimum(min_xs / 10.)
frame.SetMaximum(max_xs * 10.)
frame.Draw()
xs_graphs[8].Draw("cp")
xs_graphs[13].Draw("cp")
l = TLegend(0.7, 0.7, 0.88, 0.88)
l.SetFillStyle(0)
l.SetBorderSize(0)
l.AddEntry(xs_graphs[8], "#sqrt{s}=8 TeV", "pl")
l.AddEntry(xs_graphs[13], "#sqrt{s}=13 TeV", "pl")
l.Draw()
c.SaveAs("plots/{}.pdf".format(c.GetName()))
コード例 #18
0
ファイル: obsx-tools.py プロジェクト: kneupane1/ana2pi
def plotR2(h5, seql, poll):
    norm = 50000
    for var in range(0, NVARS):
        if var == PHI or var == ALPHA: continue
        for pobs in range(0, NPOBS):
            if pobs == A: continue
            for seq in seql:
                outdir_seq = os.path.join(outdir_q2w, SEQ_NAME[seq])
                if not os.path.isdir(outdir_seq): os.makedirs(outdir_seq)

                cname = ('R2_%s_1%s') % (POBS_NAME[pobs], VARS_NAME[var])
                l = TLine(0, 0, 180, 0)
                cR2 = TCanvas(cname, cname)  #"RvVar", "RvVar")
                hR2 = {}
                #pltnum=0
                for pol in poll:
                    outdir_pol = os.path.join(outdir_seq, POLS_NAME[pol])
                    if not os.path.isdir(outdir_pol): os.makedirs(outdir_pol)
                    if pol != AVG:
                        hR2[(pol)] = h5[(seq, pol, pobs)].Projection(var)
                        hR2[(pol)].Scale(1 / math.pi)
                        hR2[(pol)].Scale(1 / norm)
                        hR2[(pol)].SetLineColor(
                            gROOT.ProcessLine("%s" % POLS_COLOR[pol]))
                        hR2[(pol)].SetMarkerStyle(
                            gROOT.ProcessLine("kFullCircle"))
                    elif pol == AVG:
                        hR2[(AVG)] = hR2[(POS)].Clone("avg")
                        hR2[(AVG)].Add(hR2[(NEG)])
                        hR2[(AVG)].Scale(0.5)
                        if pobs == D:
                            hR2[(AVG)].SetMinimum(-0.003)
                            hR2[(AVG)].SetMaximum(0.003)
                    #Make Titles nice
                    hR2[(pol)].SetTitle("")
                    #hR2[(NEG)].SetTitle("")
                    #hR2[(AVG)].SetTitle("")

                    #cR2 = {}
                    #l = TLine(0,0,180,0)
                    #cname = ('R2%sV%s')%(VARS_NAME[var],VARS_NAME[var])
                    #if pltnum==0:
                    hR2[(pol)].Draw("ep")
                    #else:
                    #	hR2[(pol)].Draw("ep same")
                    # hR2[(NEG)].Draw("ep same")
                    #hR2[(AVG)].Draw("ep same")
                    l.Draw("same")
                    pt = TPaveText(0.3, 0.85, 0.7, 1.0, "NDC")
                    q2wt = pt.AddText('[Q^{2}][W] = %s' % q2wdir.GetName())
                    q2wt.SetTextColor(gROOT.ProcessLine("kBlue"))
                    vart = pt.AddText(
                        ("%s,%s: %s^{%s} vs. %s") %
                        (SEQ_NAME[seq], POLS_NAME[pol], POBS_NAME[pobs],
                         VARS_TITLE[0][var], VARS_TITLE[0][var]))
                    vart.SetTextSize(0.05)
                    pt.Draw()
                    csavename = ('%s/%s') % (outdir_pol, cR2.GetName())
                    cR2.SaveAs(('%s.png') % (csavename))
                    print('>>>convert %s.png %s.pdf') % (csavename, csavename)
                    rc = subprocess.call([
                        'convert',
                        '%s.png' % csavename,
                        '%s.pdf' % csavename
                    ])
                    if rc != 0: print '.png to .pdf failed for %s' % csavename
コード例 #19
0
class GQSummaryPlot:
    def __init__(self, name):
        self._name = name
        self._analyses = []
        self._dijet_data = {}
        self._legend_entries = {}
        self._graphs = {}
        self._limit_fills = {}
        self._GoMs = []
        self._vtype = "vector"
        self._style = {
            "default": {
                "line_color": 1,
                "line_width": 402,
                "line_style": 1,
                "marker_style": 20,
                "marker_size": 0,
                "marker_color": 1,
                "fill_style": 3004,
                "fill_color": 0,
            }
        }

    # style = dict of <analysis name>:{"line_color":1, "marker_style":20, etc}
    # See the default option in __init__ for the full list of options
    def set_style(self, style):
        self._style.update(style)

    def set_vtype(self, vtype):
        vtype = vtype.lower()
        if not vtype in ["vector", "axial"]:
            raise ValueError(
                "[set_vtype] Argument vtype must be 'vector' or 'axial'")
        self._vtype = vtype

    def add_data(self, dijet_data, name, legend, max_gom=False, max_gq=False):
        self._analyses.append(name)
        self._dijet_data[name] = dijet_data
        self._legend_entries[name] = legend
        self._graphs[name] = dijet_data.get_graph()

        if max_gom:
            self._limit_fills[name] = self.create_limit_gom_fill(
                dijet_data.get_graph(), max_gom)
        if max_gq:
            self._limit_fills[name] = self.create_limit_gq_fill(
                dijet_data.get_graph(), max_gq)

    def set_width_curves(self, GoMs):
        self._GoMs = GoMs

    def style_graph(self, graph, name):
        if not name in self._style:
            print "[style_graph] ERROR : Analysis {} is not present in the style dict. Please add.".format(
                name)
            sys.exit(1)
        if "line_color" in self._style[name]:
            graph.SetLineColor(self._style[name]["line_color"])
        else:
            graph.SetLineColor(self._style["default"]["line_color"])
        if "line_style" in self._style[name]:
            graph.SetLineStyle(self._style[name]["line_style"])
        else:
            graph.SetLineStyle(self._style["default"]["line_style"])
        if "line_width" in self._style[name]:
            graph.SetLineWidth(self._style[name]["line_width"])
        else:
            graph.SetLineWidth(self._style["default"]["line_width"])
        if "marker_color" in self._style[name]:
            graph.SetMarkerColor(self._style[name]["marker_color"])
        else:
            graph.SetMarkerColor(self._style["default"]["marker_color"])
        if "marker_style" in self._style[name]:
            graph.SetMarkerStyle(self._style[name]["marker_style"])
        else:
            graph.SetMarkerStyle(self._style["default"]["marker_style"])
        if "marker_size" in self._style[name]:
            graph.SetMarkerSize(self._style[name]["marker_size"])
        else:
            graph.SetMarkerSize(self._style["default"]["marker_size"])
        if "fill_style" in self._style[name]:
            graph.SetFillStyle(self._style[name]["fill_style"])
        else:
            graph.SetFillStyle(self._style["default"]["fill_style"])
        if "fill_color" in self._style[name]:
            graph.SetFillColor(self._style[name]["fill_color"])
        else:
            graph.SetFillColor(self._style["default"]["fill_color"])

    # Create a polygon TGraph corresponding to the excluded range including an upper limit from Gamma/M
    # This is pretty ugly. Can it be improved?
    def create_limit_gom_fill(self, limit_graph, max_gom):
        tf_gom = TF1(
            "tmp_tf1_gq_{}".format(max_gom),
            lambda x, this_gom=max_gom: gom_to_gq(this_gom, x[0], self._vtype),
            0.1,
            10000.,
            0)  #

        # Calculate new graph that stays at or below the gom curve
        new_limit_points = {}
        limit_x = limit_graph.GetX()
        limit_y = limit_graph.GetY()
        for i in xrange(limit_graph.GetN() - 1):
            x1 = limit_x[i]
            x2 = limit_x[i + 1]
            y1 = limit_y[i]
            y2 = limit_y[i + 1]
            gom1 = tf_gom.Eval(x1)
            gom2 = tf_gom.Eval(x2)
            if (y1 < gom1 and y2 > gom2) or (y1 > gom1 and y2 < gom2):
                # Calculate intersection of interpolation with GOM using bisection
                xlow = x1
                xhigh = x2
                ylow = y1
                yhigh = y2
                gomlow = tf_gom.Eval(xlow)
                gomhigh = tf_gom.Eval(xhigh)
                for j in xrange(20):
                    xmid = (xlow + xhigh) / 2.
                    ymid = (ylow + yhigh) / 2.
                    gommid = tf_gom.Eval(xmid)
                    if (ylow < gomlow
                            and ymid < gommid) or (ylow > gomlow
                                                   and ymid > gommid):
                        xlow = xmid
                        ylow = ymid
                        gomlow = gommid
                    elif (yhigh < gomhigh
                          and ymid < gommid) or (yhigh > gomhigh
                                                 and yhigh > gomhigh):
                        xhigh = xmid
                        yhigh = ymid
                        gomhigh = gommid
                int_x = (xhigh + xlow) / 2.
                int_y = (yhigh + ylow) / 2.
                new_limit_points[int_x] = int_y

        # Move any old points above the GOM to the GOM
        for i in xrange(limit_graph.GetN()):
            if limit_y[i] > tf_gom.Eval(limit_x[i]):
                new_limit_points[limit_x[i]] = tf_gom.Eval(limit_x[i])
            else:
                new_limit_points[limit_x[i]] = limit_y[i]

        # New graph: limit points
        new_graph = TGraph(len(new_limit_points) + 10000)
        for i, x in enumerate(sorted(new_limit_points.keys())):
            new_graph.SetPoint(i, x, new_limit_points[x])

        # New graph: upper boundary corresponding to GOM
        xmin = min(new_limit_points.keys())
        xmax = max(new_limit_points.keys())
        for i in xrange(10001):
            this_x = xmax + (xmin - xmax) * i / 10000.
            new_graph.SetPoint(
                len(new_limit_points) + i, this_x, tf_gom.Eval(this_x))
        return new_graph

    def create_limit_gq_fill(self, limit_graph, max_gq):
        # Calculate new graph that stays at or below max_gq
        new_limit_points = {}
        limit_x = limit_graph.GetX()
        limit_y = limit_graph.GetY()
        for i in xrange(limit_graph.GetN() - 1):
            x1 = limit_x[i]
            x2 = limit_x[i + 1]
            y1 = limit_y[i]
            y2 = limit_y[i + 1]
            if (y1 < max_gq and y2 > max_gq) or (y1 > max_gq and y2 < max_gq):
                # Calculate intersection of interpolation with gq
                int_x = (max_gq - y1) * (x2 - x1) / (y2 - y1) + x1
                int_y = max_gq
                new_limit_points[int_x] = int_y

        # Move any old points above gq to gq
        for i in xrange(limit_graph.GetN()):
            if limit_y[i] > max_gq:
                new_limit_points[limit_x[i]] = max_gq
            else:
                new_limit_points[limit_x[i]] = limit_y[i]

        # New graph: limit points
        new_graph = TGraph(len(new_limit_points) + 3)
        for i, x in enumerate(sorted(new_limit_points.keys())):
            new_graph.SetPoint(i, x, new_limit_points[x])

        # New graph: upper boundary corresponding to gq
        xmin = min(new_limit_points.keys())
        xmax = max(new_limit_points.keys())
        new_graph.SetPoint(len(new_limit_points), xmax, max_gq)
        new_graph.SetPoint(len(new_limit_points) + 1, xmin, max_gq)
        new_graph.SetPoint(
            len(new_limit_points) + 2, xmin, new_limit_points[xmin])
        return new_graph

    def draw(
        self,
        logx=False,
        logy=False,
        x_title="M_{Z'} [GeV]",
        y_title="g'_{q}",
        x_range=[40., 7000.],
        y_range=[0, 1.45],
        canvas_dim=[1800, 1200],
        legend_coords=[0.12, 0.28, 0.42, 0.9],
        draw_cms=None,
        legend_text_size=0.028,
        legend_ncolumns=None,
        legend_obsexp=False,  # Add a solid and dotted line to legend for obs and exp
        draw_Z_constraint=False,
        gom_x=None,  # x coordinate for Gamma/M labels
        model_label=False,  # Add a string specifying the model on the plot
        gom_fills=False  # Draw limit fills including upper boundaries
    ):
        canvas_name = "c_{}_{}_{}{}".format(self._name,
                                            ("logx" if logx else "linearx"),
                                            ("logy" if logy else "lineary"),
                                            ("_gomfills" if gom_fills else ""))
        self._canvas = TCanvas(canvas_name, canvas_name, canvas_dim[0],
                               canvas_dim[1])
        ROOT.gStyle.SetPadTickX(1)
        ROOT.gStyle.SetPadTickY(1)
        self._canvas.SetLeftMargin(0.09)
        self._canvas.SetBottomMargin(0.12)
        self._canvas.SetTopMargin(0.075)
        self._canvas.SetRightMargin(0.035)

        if logx:
            self._canvas.SetLogx()
        if logy:
            self._canvas.SetLogy()
        self._canvas.SetTicks(1, 1)
        self._canvas.cd()
        self._legend = TLegend(legend_coords[0], legend_coords[1],
                               legend_coords[2], legend_coords[3])
        self._legend.SetFillStyle(0)
        self._legend.SetBorderSize(0)
        self._legend.SetTextSize(legend_text_size)
        if legend_ncolumns:
            self._legend.SetNColumns(legend_ncolumns)

        # Legend headers and obs/exp lines
        self._legend.SetHeader("95% CL exclusions")
        if legend_obsexp:
            self._g_obs_dummy = TGraph(10)
            self._g_obs_dummy.SetLineStyle(1)
            self._g_obs_dummy.SetLineColor(1)
            self._g_obs_dummy.SetLineWidth(402)
            self._g_obs_dummy.SetMarkerStyle(20)
            self._g_obs_dummy.SetMarkerSize(0)
            self._g_obs_dummy.SetFillStyle(3004)
            self._g_obs_dummy.SetFillColor(1)
            self._legend.AddEntry(self._g_obs_dummy, "Observed", "lf")
            self._g_exp_dummy = TGraph(10)
            self._g_exp_dummy.SetLineStyle(2)
            self._g_exp_dummy.SetLineColor(1)
            self._g_exp_dummy.SetLineWidth(402)
            self._g_exp_dummy.SetMarkerStyle(20)
            self._g_exp_dummy.SetMarkerSize(0)
            self._legend.AddEntry(self._g_exp_dummy, "Expected", "l")

        self._frame = TH1D("frame", "frame", 100, x_range[0], x_range[1])
        self._frame.SetDirectory(0)
        self._frame.GetYaxis().SetRangeUser(y_range[0], y_range[1])
        self._frame.GetXaxis().SetTitle(x_title)
        self._frame.GetYaxis().SetTitle(y_title)
        self._frame.Draw("axis")
        if logx:
            self._frame.GetXaxis().SetMoreLogLabels()
            self._frame.GetXaxis().SetNdivisions(10)
            self._frame.GetXaxis().SetNoExponent(True)
        self._frame.GetXaxis().SetTitleOffset(1.)
        self._frame.GetXaxis().SetTitleSize(0.05)
        self._frame.GetXaxis().SetLabelSize(0.04)
        self._frame.GetYaxis().SetTitleOffset(0.8)
        self._frame.GetYaxis().SetTitleSize(0.05)
        self._frame.GetYaxis().SetLabelSize(0.04)
        #if logy:
        #	self._frame.GetYaxis().SetMoreLogLabels()

        # Draw limit fills first, if any
        for name, limit_fill in self._limit_fills.iteritems():
            self._limit_fills[name].SetFillStyle(3003)
            self._limit_fills[name].SetFillColor(
                self._style[name]["fill_color"])
            self._limit_fills[name].Draw("F")

        for analysis_name in self._analyses:
            self.style_graph(self._graphs[analysis_name], analysis_name)
            self._graphs[analysis_name].Draw("lp")
            if self._legend_entries[analysis_name] != False:
                self._legend.AddEntry(self._graphs[analysis_name],
                                      self._legend_entries[analysis_name], "l")

        if draw_Z_constraint:
            self._tf_Z_constraint = TF1("Z_constraint", gq_Z_constraint,
                                        x_range[0], x_range[1], 0)
            self._tf_Z_constraint.SetNpx(1000)
            self._tf_Z_constraint.SetLineColor(15)
            ROOT.gStyle.SetLineStyleString(9, "40 20")
            self._tf_Z_constraint.SetLineStyle(9)
            self._tf_Z_constraint.SetLineWidth(2)
            self._tf_Z_constraint.Draw("same")
            self._legend.AddEntry(self._tf_Z_constraint, "Z width", "l")

        # Lines at fixed Gamma / M
        self._GoM_tf1s = {}
        self._GoM_labels = {}
        for i, GoM in enumerate(self._GoMs):
            self._GoM_tf1s[GoM] = TF1(
                "tf1_gq_{}".format(GoM),
                lambda x, this_gom=GoM: gom_to_gq(this_gom, x[0], self._vtype),
                x_range[0],
                x_range[1],
                0)  #
            self._GoM_tf1s[GoM].SetLineColor(ROOT.kGray + 1)
            self._GoM_tf1s[GoM].SetLineStyle(ROOT.kDashed)
            self._GoM_tf1s[GoM].SetLineWidth(1)
            self._GoM_tf1s[GoM].Draw("same")

            # TLatex for Gamma / M
            if gom_x:
                label_x = gom_x
            else:
                if logx:
                    label_xfrac = 0.05
                else:
                    label_xfrac = 0.864
                label_x = (x_range[1] - x_range[0]) * label_xfrac + x_range[0]
            if logy:
                label_y = self._GoM_tf1s[GoM].Eval(label_x) * 0.85
                gom_text = "#Gamma/M_{{Z'}} = {}%".format(int(GoM * 100))
            else:
                # label_y = self._GoM_tf1s[GoM].Eval(label_x) - 0.085 # For labels under the line
                label_y = self._GoM_tf1s[GoM].Eval(
                    label_x) + 0.05  # For labels over the line
                gom_text = "#frac{{#Gamma}}{{M_{{Z'}}}} = {}%".format(
                    int(GoM * 100))
            self._GoM_labels[GoM] = TLatex(label_x, label_y, gom_text)
            if logy:
                self._GoM_labels[GoM].SetTextSize(0.028)
            else:
                self._GoM_labels[GoM].SetTextSize(0.033)
            self._GoM_labels[GoM].SetTextColor(ROOT.kGray + 1)
            self._GoM_labels[GoM].Draw("same")

        # Vector label
        if model_label:
            self._model_label = TLatex(model_label["x"], model_label["y"],
                                       model_label["text"])
            self._model_label.SetTextSize(0.04)
            self._model_label.SetTextColor(1)
            self._model_label.Draw("same")

        # Legend last, to be on top of lines
        self._legend.Draw()

        if draw_cms:
            CMSLabel(self._canvas,
                     extra_text=draw_cms,
                     halign="left",
                     valign="top",
                     in_frame=False)

    def save(self, folder, exts=["pdf"]):
        for ext in exts:
            self._canvas.SaveAs("{}/{}.{}".format(folder,
                                                  self._canvas.GetName(), ext))
コード例 #20
0
def main(reader_name,
         tags,
         lut_path,
         ptmin,
         ptmax,
         ymin=None,
         ymax=None,
         tag_name=None,
         logx=False,
         logy=False,
         leg_pos=[0.74, 0.2, 0.90, 0.4],
         particles=None,
         eta=0,
         dnch_deta=100,
         rmin=None,
         add_eta_label=True,
         add_alice3_label=True,
         save=None,
         background=False,
         use_p_over_z=True,
         aod=None,
         study_label="ALICE 3 study"):
    gROOT.LoadMacro(reader_name)
    gROOT.LoadMacro("style.C")
    reader_name = reader_name.split(".")[-2]
    reader = getattr(__import__('ROOT', fromlist=[reader_name]), reader_name)
    style = getattr(__import__('ROOT', fromlist=["style"]), "style")

    style()

    p = {
        "el": "e",
        "pi": "#pi",
        "ka": "K",
        "pr": "p",
        "de": "d",
        "tr": "t",
        "he3": "^{3}He"
    }
    charge = {"el": 1, "pi": 1, "ka": 1, "pr": 1, "de": 1, "tr": 1, "he3": 2}
    p_colors = {
        "el": "#e41a1c",
        "pi": "#377eb8",
        "ka": "#4daf4a",
        "pr": "#984ea3",
        "de": "#ff7f00",
        "tr": "#999999",
        "he3": "#a65628"
    }

    if particles is not None:
        to_remove = []
        for i in p:
            if i not in particles:
                to_remove.append(i)
        for i in to_remove:
            p.pop(i)

    latex = TLatex()
    latex.SetTextAlign(33)
    canvas = reader_name
    canvas = canvas.replace("lutRead_", "")
    canvas = TCanvas(canvas, canvas, 800, 800)
    canvas.Divide(2, 2)
    drawn = [canvas]
    drawn_graphs = {}
    drawn_frames = {}
    if ymin is None:
        if "_dca" in reader_name:
            ymin = 0.1
        elif "_pt" in reader_name:
            ymin = 1.
        elif "_eff" in reader_name:
            ymin = 0.
    if ymax is None:
        if "_dca" in reader_name:
            ymax = 1e4
        elif "_pt" in reader_name:
            ymax = 100.
        elif "_eff" in reader_name:
            ymax = 115.

    def adjust_pad():
        if logx:
            gPad.SetLogx()
        if logy:
            gPad.SetLogy()

    counter = 1
    leg = None
    if tag_name is not None:
        leg = TLegend(*leg_pos)
        if add_eta_label:
            label = f"#eta = {int(eta)}"
            label += " dN_{Ch}/d#eta ="
            label += f" {int(dnch_deta)}"
            if rmin is not None:
                label += "   R_{min} = " + rmin
            else:
                leg.SetHeader()
            leg.SetHeader(label)
        leg.SetLineColor(0)
        drawn.append(leg)

    def draw_study_label(x=0.5, y=0.9):
        latex = TLatex()
        latex.SetTextAlign(13)
        drawn.append(latex.DrawLatexNDC(x, y, " ".join(study_label)))

    for i in p:
        c = f"{canvas.GetName()}_{i}"
        c = TCanvas(c, c, 800, 800)
        drawn.append(c)
        adjust_pad()

        frame = c.DrawFrame(ptmin, ymin, ptmax, ymax, "")
        frame.SetDirectory(0)
        drawn_frames[i] = frame
        g_list = []
        extra = {}
        cols = [
            '#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00', '#ffff33'
        ]
        for k, j in enumerate(tags):
            lut = f"{lut_path}/lutCovm.{i}.{j}.dat"
            if j == "":
                lut = f"{lut_path}/lutCovm.{i}.dat"
            if not path.isfile(lut):
                print("LUT file", lut, "does not exist")
                return
            g = reader(lut, eta, dnch_deta)
            if g.GetN() <= 0:
                print("Skipping", g.GetName(), "because empty graph")
                continue
            if len(g_list) == 0:
                frame.GetXaxis().SetTitle(g.GetXaxis().GetTitle())
                frame.GetYaxis().SetTitle(g.GetYaxis().GetTitle())
            if use_p_over_z:
                for j in range(g.GetN()):
                    if "_pt" in reader_name:
                        g.SetPoint(j,
                                   g.GetPointX(j) / charge[i],
                                   g.GetPointY(j) / charge[i])
                    else:
                        g.SetPoint(j,
                                   g.GetPointX(j) / charge[i], g.GetPointY(j))
                frame.GetXaxis().SetTitle("#it{p}_{T}/z (GeV/#it{c})")
            col = TColor.GetColor(cols[len(g_list)])
            g.SetLineColor(col)
            g.SetLineStyle(1)
            g.SetLineWidth(3)
            g.Draw("samel")
            if aod is not None:
                f_aod = TFile(aod, "READ")
                if "_eff" in reader_name:
                    extra[g.GetName()] = f_aod.Get(
                        "qa-tracking-efficiency-kaon/pt/num")
                    extra[g.GetName()].Divide(
                        f_aod.Get("qa-tracking-efficiency-kaon/pt/num"),
                        f_aod.Get("qa-tracking-efficiency-kaon/pt/den"), 1, 1,
                        "B")
                    extra[g.GetName()].Scale(100)
                    extra[g.GetName()].Draw("SAME")
                    extra[g.GetName()].SetDirectory(0)
                elif "_pt" in reader_name:
                    extra[g.GetName()] = f_aod.Get(
                        "qa-tracking-efficiency-kaon/pt/num")
                    extra[g.GetName()].Divide(
                        f_aod.Get("qa-tracking-efficiency-kaon/pt/num"),
                        f_aod.Get("qa-tracking-efficiency-kaon/pt/den"), 1, 1,
                        "B")
                    extra[g.GetName()].Scale(100)
                    extra[g.GetName()].Draw("SAME")
                    extra[g.GetName()].SetDirectory(0)
                f_aod.Close()

            print("Drawing", g.GetName())
            if tag_name is not None and counter == 1:
                leg.AddEntry(g, tag_name[k], "l")
            g_list.append(g)
        drawn_graphs[i] = g_list
        if len(g_list) <= 0:
            print("Nothing drawn!")
            continue
        drawn.append(latex.DrawLatexNDC(0.9, 0.9, p[i]))
        if leg is not None:
            leg.Draw()
        draw_study_label(.4, .91)
        gPad.Update()
        canvas.cd(counter)
        clone = c.DrawClonePad()
        if counter != 1:
            l = gPad.GetListOfPrimitives()
            for i in l:
                cn = i.ClassName()
                if cn == "TLegend":
                    l.Remove(i)
                elif cn == "TLatex":
                    if "ALICE" in i.GetTitle():
                        l.Remove(i)
        drawn.append(clone)
        c.SaveAs(f"/tmp/{c.GetName()}.png")
        gPad.Update()
        counter += 1
    canvas_all_species = None
    if len(tags) == 1:
        canvas_all_species = TCanvas("all_spec_" + canvas.GetName(),
                                     "all_spec_" + canvas.GetName(), 800, 800)
        drawn.append(canvas_all_species)
        canvas_all_species.cd()
        drawn_graphs_all_spec = {}
        leg_all_spec = TLegend(*leg_pos)
        leg_all_spec.SetNColumns(2)
        leg_all_spec.SetLineColor(0)
        drawn.append(leg_all_spec)
        for i in drawn_graphs:
            if canvas_all_species.GetListOfPrimitives().GetEntries() == 0:
                drawn_frames[i].Draw()
            g_list = []
            for j in drawn_graphs[i]:
                g_list.append(j.Clone())
                g_list[-1].SetName(g_list[-1].GetName() + "_color")
                g_list[-1].SetLineColor(TColor.GetColor(p_colors[i]))
                g_list[-1].Draw("same")
                leg_all_spec.AddEntry(g_list[-1], p[i], "L")
            drawn_graphs_all_spec[i] = g_list
        for i in drawn_graphs_all_spec:
            drawn_graphs[i + "_allspec"] = drawn_graphs_all_spec[i]
        leg_all_spec.Draw()
        if add_alice3_label:
            draw_study_label()
            latex = TLatex()
            latex.SetTextAlign(13)
            latex.SetTextSize(0.04)
            if tag_name is not None:
                drawn.append(latex.DrawLatexNDC(0.5, 0.80, tag_name[0]))
            drawn.append(
                latex.DrawLatexNDC(
                    0.4, 0.82, f"#eta = {int(eta)}" + "\n dN_{Ch}/d#eta =" +
                    f" {int(dnch_deta)}" +
                    ("\n R_{min} = " + rmin if rmin is not None else "")))

        adjust_pad()
        canvas_all_species.Update()
        canvas_all_species.SaveAs(f"/tmp/{canvas_all_species.GetName()}.png")
    if save is None:
        canvas.SaveAs(f"/tmp/lut_{canvas.GetName()}.root")
    else:
        fo = TFile(save, "RECREATE")
        fo.cd()
        canvas.Write()
        if canvas_all_species is not None:
            canvas_all_species.Write()
        for i in drawn_graphs:
            for j in drawn_graphs[i]:
                j.Write()
    if not background:
        input("Done, press enter to continue")
コード例 #21
0
ファイル: plotSignalModel.py プロジェクト: tklijnsma/h2gglobe
def main(options, args):

    from ROOT import gSystem, gROOT, gStyle
    gROOT.SetBatch()
    gSystem.Load("libRooFitCore")

    if options.doWebPage:
        from lip.Tools.rootutils import loadToolsLib, apply_modifs
        loadToolsLib()

    from ROOT import TFile, RooFit, RooArgSet, RooDataHist, RooKeysPdf, RooHistPdf, TCanvas, TLegend, TLatex, TArrow, TPaveText, RooAddPdf, RooArgList
    from ROOT import kWhite, kBlue, kOpenSquare
    if options.doWebPage:
        from ROOT import HtmlHelper, HtmlTag, HtmlTable, HtmlPlot

    rootglobestyle.setTDRStyle()
    gStyle.SetMarkerSize(1.5)
    gStyle.SetTitleYOffset(1.5)

    gStyle.SetPadLeftMargin(0.16)
    gStyle.SetPadRightMargin(0.05)
    gStyle.SetPadTopMargin(0.05)
    gStyle.SetPadBottomMargin(0.13)

    gStyle.SetLabelFont(42, "XYZ")
    gStyle.SetLabelOffset(0.007, "XYZ")
    gStyle.SetLabelSize(0.05, "XYZ")

    gStyle.SetTitleSize(0.06, "XYZ")
    gStyle.SetTitleXOffset(0.9)
    gStyle.SetTitleYOffset(1.24)
    gStyle.SetTitleFont(42, "XYZ")

    ##
    ## Read files
    ##
    options.outdir = "%s_m%1.0f" % (options.outdir, options.mH)
    if options.fp:
        options.outdir += "_fp"

    ncat = options.ncat
    cats = options.cats
    if cats is "":
        categories = ["_cat%d" % i for i in range(0, ncat)]
    else:
        categories = ["_cat%s" % i for i in cats.split(",")]

    if options.mva:
        clables = {
            "_cat0": ("MVA > 0.89", ""),
            "_cat1": ("0.74 #leq MVA", "MVA < 0.89"),
            "_cat2": ("0.545 #leq MVA", "MVA < 0.74"),
            "_cat3": ("0.05 #leq MVA", "MVA < 0.545"),
            "_cat4": ("Di-jet", "Tagged"),
            "_cat5": ("Di-jet", "Tagged"),
            "_combcat": ("All Classes", "Combined")
        }
    else:
        clables = {
            "_cat0": ("max(|#eta|<1.5", "min(R_{9})>0.94"),
            "_cat1": ("max(|#eta|<1.5", "min(R_{9})<0.94"),
            "_cat2": ("max(|#eta|>1.5", "min(R_{9})>0.94"),
            "_cat3": ("max(|#eta|>1.5", "min(R_{9})<0.94"),
            "_cat4": ("Di-jet", "Tagged"),
            "_cat5": ("Di-jet", "Tagged"),
            "_combcat": ("All Classes", "Combined")
        }
    helper = Helper()

    fin = TFile.Open(options.infile)
    helper.files.append(fin)
    ws = fin.Get("cms_hgg_workspace")
    mass = ws.var("CMS_hgg_mass")
    mass.SetTitle("m_{#gamma#gamma}")
    mass.setUnit("GeV")
    mass.setRange(100., 150.)
    mass.setBins(100, "plot")
    mass.setBins(5000)

    print ws

    aset = RooArgSet(mass)

    helper.objs.append(mass)
    helper.objs.append(aset)

    fitopt = (RooFit.Minimizer("Minuit2", ""), RooFit.Minos(False),
              RooFit.SumW2Error(False), RooFit.NumCPU(8))

    if not options.binned and not options.refit:
        finpdf = TFile.Open(options.infilepdf)
        helper.files.append(finpdf)
        wspdf = finpdf.Get("wsig")
    else:
        wspdf = ws

    for c in categories:
        processes = ["ggh", "vbf", "wzh"]
        if options.fp:
            processes = ["vbf", "wzh"]
        ### elif clables[c][0] == "Di-jet":
        ###     processes = [ "vbf", "ggh" ]

        dsname = "sig_mass_m%1.0f%s" % (options.mH, c)
        print dsname
        print ws
        ds = ws.data("sig_%s_mass_m%1.0f%s" %
                     (processes[0], options.mH, c)).Clone(dsname)
        for proc in processes[1:]:
            ds.append(ws.data("sig_%s_mass_m%1.0f%s" % (proc, options.mH, c)))
        helper.dsets.append(ds)

        if options.binned:
            binned_ds = RooDataHist("binned_%s" % dsname, "binned_%s" % dsname,
                                    aset, ds)
            pdf = RooKeysPdf("pdf_%s_%s" % (dsname, f), "pdf_%s" % dsname,
                             mass, ds)
            plot_pdf = RooHistPdf("pdf_%s" % dsname, "pdf_%s" % dsname, aset,
                                  plot_ds)
            helper.add(binned_ds, binned_ds.GetName())
        else:
            if options.refit:
                if options.refitall and clables[c][0] != "Di-jet":
                    rpdfs = []
                    for proc in processes:
                        for ngaus in range(1, 4):
                            pp = build_pdf(ws, "%s_%s" % (c, proc), ngaus,
                                           ngaus == 3)
                            pp.fitTo(
                                ws.data("sig_%s_mass_m%1.0f%s" %
                                        (proc, options.mH, c)),
                                RooFit.Strategy(0), *fitopt)
                        rpdfs.append(pp)
                    pdf = RooAddPdf("hggpdfrel%s" % c, "hggpdfrel%s" % c,
                                    RooArgList(*tuple(rpdfs)))
                else:
                    if options.refitall and clables[c][0] == "Di-jet":
                        for ngaus in range(1, 5):
                            pdf = build_pdf(ws, c, ngaus, ngaus == 5)
                            pdf.fitTo(ds, RooFit.Strategy(0), *fitopt)
                    else:
                        for ngaus in range(1, 4):
                            pdf = build_pdf(ws, c, ngaus, ngaus == 3)
                            pdf.fitTo(ds, RooFit.Strategy(0), *fitopt)
            else:
                pdfs = (wspdf.pdf("hggpdfrel%s_%s" % (c, p))
                        for p in processes)
                pdf = RooAddPdf("hggpdfrel%s" % c, "hggpdfrel%s" % c,
                                RooArgList(*pdfs))
            helper.add(pdf, pdf.GetName())
            plot_pdf = pdf.Clone("pdf_%s" % dsname)

        plot_ds = RooDataHist("plot_%s" % dsname, "plot_%s" % dsname, aset,
                              "plot")
        plot_ds.add(ds)

        cdf = pdf.createCdf(aset)
        hmin, hmax, hm = get_FWHM(mass, pdf, cdf, options.mH - 10.,
                                  options.mH + 10.)
        wmin, wmax = get_eff_sigma(mass, pdf, cdf, options.mH - 10.,
                                   options.mH + 10.)
        ### hmin, hmax, hm = get_FWHM( points )

        helper.add(plot_ds, plot_ds.GetName())
        helper.add(plot_pdf, plot_pdf.GetName())
        helper.add((wmin, wmax), "eff_sigma%s" % c)
        helper.add((hmin, hmax, hm), "FWHM%s" % c)
        helper.add(ds.sumEntries(),
                   "sumEntries%s" % c)  # signal model integral

        # data integral for PAS tables
        data = ws.data("data_mass%s" % c)
        helper.add(
            data.sumEntries("CMS_hgg_mass>=%1.4f && CMS_hgg_mass<=%1.4f" %
                            (options.mH - 10., options.mH + 10.)),
            "data_sumEntries%s" % c)

        del cdf
        del pdf

    dsname = "sig_mass_m%1.0f_combcat" % options.mH
    print dsname
    combined_ds = helper.dsets[0].Clone(dsname)
    for d in helper.dsets[1:]:
        combined_ds.append(d)

    if options.binned:
        binned_ds = RooDataHist("binned_%s" % dsname, "binned_%s" % dsname,
                                aset, combined_ds)
        pdf = RooKeysPdf("pdf_%s" % (dsname), "pdf_%s" % dsname, mass,
                         combined_ds)
        plot_pdf = RooHistPdf("pdf_%s" % dsname, "pdf_%s" % dsname, aset,
                              plot_ds)
        helper.add(binned_ds, binned_ds.GetName())
    else:
        #### pdf = build_pdf(ws,"_combcat")
        #### pdf.fitTo(combined_ds, RooFit.Strategy(0), *fitopt )
        #### plot_pdf = pdf.Clone( "pdf_%s" % dsname )
        pdf = RooAddPdf(
            "pdf_%s" % dsname, "pdf_%s" % dsname,
            RooArgList(*(helper.histos["hggpdfrel%s" % c]
                         for c in categories)))
        plot_pdf = pdf

    cdf = pdf.createCdf(aset)

    plot_ds = RooDataHist("plot_%s" % dsname, "plot_%s" % dsname, aset, "plot")
    plot_ds.add(combined_ds)

    wmin, wmax = get_eff_sigma(mass, pdf, cdf, options.mH - 10.,
                               options.mH + 10.)
    hmin, hmax, hm = get_FWHM(mass, pdf, cdf, options.mH - 10.,
                              options.mH + 10.)

    helper.add(plot_ds, plot_ds.GetName())
    helper.add(plot_pdf, plot_pdf.GetName())
    helper.add((wmin, wmax), "eff_sigma_combcat")
    helper.add((hmin, hmax, hm), "FWHM_combcat")
    helper.add(plot_ds.sumEntries(), "sumEntries_combcat")

    mass.setRange("higgsrange", options.mH - 25., options.mH + 15.)

    del cdf
    del pdf
    del helper.dsets

    ### label = TLatex(0.1812081,0.8618881,"#scale[0.8]{#splitline{CMS preliminary}{Simulation}}")
    label = TLatex(0.7, 0.86,
                   "#scale[0.65]{#splitline{CMS preliminary}{Simulation}}")
    label.SetNDC(1)

    ##
    ## Make web page with plots
    ##
    if options.doWebPage:
        hth = HtmlHelper(options.outdir)
        hth.navbar().cell(HtmlTag("a")).firstChild().txt("..").set(
            "href", "../?C=M;O=D")
        hth.navbar().cell(HtmlTag("a")).firstChild().txt("home").set(
            "href", "./")

        tab = hth.body().add(HtmlTable())

    ip = 0
    for c in ["_combcat"] + categories:
        ### for c in categories:
        if options.doWebPage and ip % 4 == 0:
            row = tab.row()
        ip = ip + 1

        dsname = "sig_mass_m%1.0f%s" % (options.mH, c)
        canv = TCanvas(dsname, dsname, 600, 600)
        helper.objs.append(canv)

        ### leg = TLegend(0.4345638,0.6835664,0.9362416,0.9178322)
        leg = TLegend(0.2, 0.96, 0.5, 0.55)
        #apply_modifs( leg, [("SetLineColor",kWhite),("SetFillColor",kWhite),("SetFillStyle",0),("SetLineStyle",0)] )

        hplotcompint = mass.frame(RooFit.Bins(250), RooFit.Range("higgsrange"))
        helper.objs.append(hplotcompint)
        helper.objs.append(leg)

        plot_ds = helper.histos["plot_%s" % dsname]
        plot_pdf = helper.histos["pdf_%s" % dsname]
        wmin, wmax = helper.histos["eff_sigma%s" % c]
        hmin, hmax, hm = helper.histos["FWHM%s" % c]
        print hmin, hmax, hm

        style = (RooFit.LineColor(kBlue), RooFit.LineWidth(2),
                 RooFit.FillStyle(0))
        style_seff = (
            RooFit.LineWidth(2),
            RooFit.FillStyle(1001),
            RooFit.VLines(),
            RooFit.LineColor(15),
        )
        style_ds = (RooFit.MarkerStyle(kOpenSquare), )

        plot_ds.plotOn(hplotcompint, RooFit.Invisible())

        plot_pdf.plotOn(hplotcompint, RooFit.NormRange("higgsrange"),
                        RooFit.Range(wmin, wmax), RooFit.FillColor(19),
                        RooFit.DrawOption("F"), *style_seff)
        seffleg = hplotcompint.getObject(int(hplotcompint.numItems() - 1))
        plot_pdf.plotOn(hplotcompint, RooFit.NormRange("higgsrange"),
                        RooFit.Range(wmin, wmax), RooFit.LineColor(15),
                        *style_seff)

        plot_pdf.plotOn(hplotcompint, RooFit.NormRange("higgsrange"),
                        RooFit.Range("higgsrange"), *style)
        pdfleg = hplotcompint.getObject(int(hplotcompint.numItems() - 1))

        plot_ds.plotOn(hplotcompint, *style_ds)
        pointsleg = hplotcompint.getObject(int(hplotcompint.numItems() - 1))

        iob = int(hplotcompint.numItems() - 1)
        leg.AddEntry(pointsleg, "Simulation", "pe")
        leg.AddEntry(pdfleg, "Parametric model", "l")
        leg.AddEntry(seffleg,
                     "#sigma_{eff} = %1.2f GeV " % (0.5 * (wmax - wmin)), "fl")

        clabel = TLatex(0.74, 0.65,
                        "#scale[0.65]{#splitline{%s}{%s}}" % clables[c])
        clabel.SetNDC(1)
        helper.objs.append(clabel)

        hm = hplotcompint.GetMaximum() * 0.5 * 0.9
        ### hm = pdfleg.GetMaximum()*0.5
        fwhmarrow = TArrow(hmin, hm, hmax, hm)
        fwhmarrow.SetArrowSize(0.03)
        helper.objs.append(fwhmarrow)
        fwhmlabel = TPaveText(0.20, 0.58, 0.56, 0.48, "brNDC")
        fwhmlabel.SetFillStyle(0)
        fwhmlabel.SetLineColor(kWhite)
        reducedFWHM = (hmax - hmin) / 2.3548200
        fwhmlabel.AddText("FWHM/2.35 = %1.2f GeV" % reducedFWHM)
        helper.objs.append(fwhmlabel)

        hplotcompint.SetTitle("")
        hplotcompint.GetXaxis().SetNoExponent(True)
        hplotcompint.GetXaxis().SetTitle("m_{#gamma#gamma} (GeV)")
        hplotcompint.GetXaxis().SetNdivisions(509)
        ## hplotcompint.GetYaxis().SetTitle("A.U.");
        ## hplotcompint.GetYaxis().SetRangeUser(0.,hplotcompint.GetMaximum()*1.4);
        hplotcompint.Draw()
        leg.Draw("same")
        label.Draw("same")
        clabel.Draw("same")
        fwhmarrow.Draw("<>")
        fwhmlabel.Draw("same")

        plot_ds.sumEntries()

        if options.doWebPage:
            hpl = HtmlPlot(canv, False, "", True, True, True)
            hpl.caption("<i>%s</i>" % canv.GetTitle())
            row.cell(hpl)
        else:
            if os.path.isdir(options.outdir) is False:
                os.mkdir(options.outdir)
            for ext in "C", "png", "pdf":
                canv.SaveAs(
                    os.path.join(options.outdir,
                                 "%s.%s" % (canv.GetName(), ext)))

        if "comb" in c:
            ip = 0

    if options.doWebPage:
        print "Creating pages..."
        hth.dump()

    for f in helper.files:
        f.Close()
    gROOT.Reset()

    from pprint import pprint
    pprint(helper)

    print 'Summary statistics per event class'
    print 'Cat\tSignal\t\tData/GeV (in %3.1f+/-10)\tsigEff\tFWHM/2.35' % options.mH
    sigTotal = 0.
    dataTotal = 0.
    for c in categories:
        sigVal = helper.histos["sumEntries%s" % c]
        datVal = helper.histos["data_sumEntries%s" % c]
        sigTotal += sigVal
        dataTotal += datVal
    for c in categories:
        sigVal = helper.histos["sumEntries%s" % c]
        datVal = helper.histos["data_sumEntries%s" % c]
        effSig = 0.5 * (helper.histos["eff_sigma%s" % c][1] -
                        helper.histos["eff_sigma%s" % c][0])
        fwhm = (helper.histos["FWHM%s" % c][1] -
                helper.histos["FWHM%s" % c][0]) / 2.3548200
        print c, '\t%3.1f (%3.1f%%)\t%3.1f (%3.1f%%)\t\t\t%2.2f\t%2.2f' % (
            sigVal, 100. * sigVal / sigTotal, datVal /
            (10. + 10.), 100. * datVal / dataTotal, effSig, fwhm)

    print "Done."
コード例 #22
0
ファイル: genAnalysis.py プロジェクト: pandolf/HNLsGen
    def plotHistos(self, norm=False, sameCanvas=False):
        ''' 
    Superimpose histograms for all samples, on the same canvas or on separate canvases
    '''
        if sameCanvas:
            c = TCanvas(self.name, self.name, 6400, 4800)
            tosave = {c.GetName(): c}
        else:
            c = None
            tosave = {}

        legends = []

        hMax = {}
        for j, what in enumerate(self.samples[0].histos.keys()):
            hMax[what] = []
            leg = defaultLegend(x1=0.15, y1=0.7, x2=0.95, y2=0.95, mult=1.2)
            legends.append(leg)
        # do the actual plotting
        for i, sample in enumerate(self.samples):
            if i == 0:
                opt = 'histE'
                if sameCanvas: c.DivideSquare(len(sample.histos.keys()))
            else: opt = 'histEsame'
            for j, what in enumerate(sample.histos.keys()):
                h = sample.histos[what]
                graph_saver.append(h)

                if sameCanvas: pad = c.cd(j + 1)
                else:
                    cname = '%s_%s' % (self.name, what)
                    if cname not in tosave.keys():
                        tosave[cname] = TCanvas(cname, cname, 700, 600)
                    pad = tosave[cname].cd()

                if i == 0:
                    pad.SetLogx(sample.histoDefs[what].logX)
                    pad.SetLogy(sample.histoDefs[what].logY)
                if norm and h.Integral():
                    hdrawn = h.DrawNormalized(opt)
                    hMax[what].append(hdrawn)
                    hdrawn.SetLineColor(self.colors[i])
                    hdrawn.SetMarkerColor(self.colors[i])
                    hdrawn.SetMarkerStyle(self.styles[i])
                    hdrawn.SetMarkerSize(3)
                    hdrawn.SetLineWidth(2)
                    legends[j].AddEntry(hdrawn, sample.legname, 'LP')

                else:
                    h.Draw(opt)
                    hMax[what].append(h)
                    h.SetLineColor(self.colors[i])
                    h.SetMarkerColor(self.colors[i])
                    h.SetMarkerStyle(self.styles[i])
                    h.SetMarkerSize(4)
                    h.SetLineWidth(2)
                    legends[j].AddEntry(hdrawn, sample.legname, 'LP')

                if i == len(self.samples) - 1:
                    legends[j].Draw('same')

        # compute the max of norm histo and set the range accordingly
        for j, what in enumerate(self.samples[0].histos.keys()):
            if len(hMax[what]) > 0:
                max = 0
                for ih in hMax[what]:
                    if (max < ih.GetMaximum()):
                        max = ih.GetMaximum()
                if (sample.histoDefs[what].logY == True):
                    #hMax[name][0].GetYaxis().SetRangeUser(0.01, max * 7)
                    hMax[what][0].SetMaximum(max * 30)
                    #print hMax[what][0].GetMaximum()
                else:
                    #hMax[name][0].GetYaxis().SetRangeUser(0.01, max * 1.5)
                    hMax[what][0].SetMaximum(max * 1.7)

        norm_suffix = '_norm' if norm else ''

        for cname, canv in tosave.items():
            canv.SaveAs('./plots/' + self.label + suffix + '/' + cname +
                        norm_suffix + '.png')
            canv.SaveAs('./plots/' + self.label + suffix + '/' + cname +
                        norm_suffix + '.pdf')
            canv.SaveAs('./plots/' + self.label + suffix + '/' + cname +
                        norm_suffix + '.C')
コード例 #23
0
ファイル: reader.py プロジェクト: alexandertuna/MMTP_ML
gr1.SetLineColor(30)
gr1.SetLineWidth(1)
gr1.SetMarkerStyle(21)
gr1.SetMarkerColor(3)

gr2.SetLineColor(38)
gr2.SetLineWidth(1)
gr2.SetMarkerStyle(29)
gr2.SetMarkerColor(4)

gr3.SetLineColor(12)
gr3.SetLineWidth(1)
gr3.SetMarkerStyle(31)
gr3.SetMarkerColor(1)

gr0.Draw('APL')
gr1.Draw('PL')
gr2.Draw('PL')
gr3.Draw('PL')

legend = ROOT.TLegend(0.1, 0.3, 0.48, 0.5)
legend.AddEntry(gr0, 'DNN', "lp")
legend.AddEntry(gr1, 'BDT', "lp")
legend.AddEntry(gr2, 'MLP', "lp")
legend.AddEntry(gr3, 'kNN', "lp")
legend.Draw()

c1.Update()

c1.SaveAs("dataset_e90/%s.pdf" % (c1.GetName() + "_1M_100k"))
コード例 #24
0
def plotOtherCoordinate(datafile, crossings, scans):
    gStyle.SetOptStat(0)
    f = TFile.Open(datafile)
    for bx in crossings:
        for coord in ('X', 'Y'):
            if 'X' in coord:
                other = 'Y'
            else:
                other = 'X'
            meanGraphs = []
            rmsGraphs = []
            for scan in scans:
                meanVal = array('d')
                meanErr = array('d')
                rmsVal = array('d')
                rmsErr = array('d')
                stepVal = array('d', [1.0 * a for a in range(1, 20)])
                stepErr = array('d', 19 * [0.0])
                for i in range(1, 20):
                    hist = f.Get('scan' + coord + scan + 'Move_b' + bx + '_' +
                                 str(i))
                    funcGaus = TF1('funcGaus' + coord + scan, 'gaus', -10, 10)
                    getattr(hist, 'Projection' + other)().Fit('funcGaus' +
                                                              coord + scan)
                    meanVal.append(funcGaus.GetParameter('Mean') * scaling)
                    meanErr.append(funcGaus.GetParError(1) * scaling)
                    rmsVal.append(funcGaus.GetParameter('Sigma') * scaling)
                    rmsErr.append(funcGaus.GetParError(2) * scaling)
                meanGraph = TGraphErrors(19, stepVal, meanVal, stepErr,
                                         meanErr)
                rmsGraph = TGraphErrors(19, stepVal, rmsVal, stepErr, rmsErr)
                meanGraph.SetName('graph' + coord + scan + 'MeanBX' + bx)
                rmsGraph.SetName('graph' + coord + scan + 'RmsBX' + bx)
                meanGraphs.append(meanGraph)
                rmsGraphs.append(rmsGraph)
            meanMulti = TMultiGraph('multi' + coord + scan + 'MeanBX' + bx, '')
            rmsMulti = TMultiGraph('multi' + coord + scan + 'RmsBX' + bx, '')
            for i, gr in enumerate(meanGraphs):
                gr.SetMarkerStyle(3 + 19 * i)
                gr.SetMarkerSize(1)
                gr.SetMarkerColor(2 + i)
                meanMulti.Add(gr)
            for i, gr in enumerate(rmsGraphs):
                gr.SetMarkerStyle(3 + 19 * i)
                gr.SetMarkerSize(1)
                gr.SetMarkerColor(2 + i)
                rmsMulti.Add(gr)
            meanCanvas = TCanvas('canvasMean' + coord + 'ScanBX' + bx, '',
                                 1000, 600)
            meanMulti.Draw('APE')
            meanCanvas.Update()
            meanMulti.GetYaxis().SetTitle('luminous region ' + other.lower() +
                                          '-mean [cm]')
            meanMulti.GetXaxis().SetTitle('scan point')
            meanMulti.GetYaxis().SetTitleOffset(1.3)
            meanMulti.GetYaxis().SetRangeUser(-0.01, 0.01)
            meanMulti.GetYaxis().SetTickLength(0.02)
            meanLeg = TLegend(0.4, 0.13, 0.6, 0.28)
            meanLeg.SetHeader(coord + ' Scan (BCID ' + bx + ')')
            meanLeg.SetBorderSize(0)
            meanLeg.SetNColumns(2)
            for i, gr in enumerate(meanGraphs):
                entry = meanLeg.AddEntry(gr.GetName(), 'Scan ' + scans[i],
                                         'lep')
                entry.SetMarkerStyle(3 + 19 * i)
                entry.SetMarkerColor(2 + i)
            meanLeg.Draw()
            drawCMS()
            meanCanvas.Modified()
            meanCanvas.Update()
            meanCanvas.SaveAs('summaryPlots/' + meanCanvas.GetName() + '.pdf')
            meanCanvas.SaveAs('summaryPlots/' + meanCanvas.GetName() + '.C')
            rmsCanvas = TCanvas('canvasRms' + coord + 'ScanBX' + bx, '', 1000,
                                600)
            rmsMulti.Draw('APE')
            rmsCanvas.Update()
            rmsMulti.GetYaxis().SetTitle('luminous region ' + other.lower() +
                                         '-width [cm]')
            rmsMulti.GetXaxis().SetTitle('scan point')
            rmsMulti.GetYaxis().SetTitleOffset(1.3)
            rmsMulti.GetYaxis().SetRangeUser(-0.01, 0.04)
            rmsMulti.GetYaxis().SetTickLength(0.02)
            rmsLeg = TLegend(0.4, 0.13, 0.6, 0.28)
            rmsLeg.SetHeader(coord + ' Scan (BCID ' + bx + ')')
            rmsLeg.SetBorderSize(0)
            rmsLeg.SetNColumns(2)
            for i, gr in enumerate(rmsGraphs):
                entry = rmsLeg.AddEntry(gr.GetName(), 'Scan ' + scans[i],
                                        'lep')
                entry.SetMarkerStyle(3 + 19 * i)
                entry.SetMarkerColor(2 + i)
            rmsLeg.Draw()
            drawCMS()
            rmsCanvas.Modified()
            rmsCanvas.Update()
            rmsCanvas.SaveAs('summaryPlots/' + rmsCanvas.GetName() + '.pdf')
            rmsCanvas.SaveAs('summaryPlots/' + rmsCanvas.GetName() + '.C')
コード例 #25
0
def readRateFile(version, algoName, ptCutGev):
    folder = 'crab_omtf_nn_MC_analysis_SingleNeutrino_PU200_v2_' + version
    if version == "t74" or version == "t78" or version == "t80" or version == "t100" or version == "t104":
        folder = 'crab_omtf_nn_MC_analysis_SingleNeutrino_PU200_v3_' + version

    if folder in histFiles:
        histFile = histFiles.get(folder)
    else:
        histFile = TFile(fileDir + folder + '/results/omtfAnalysis2.root')
        histFiles[folder] = histFile

    print("\nreading file " + histFile.GetName())

    rateDir = histFile.Get("L1MuonAnalyzerOmtf/rate")
    #rateDir.ls()

    algoDir = None
    #algoDir.ls()

    for obj in rateDir.GetListOfKeys():
        if algoName == obj.GetName():
            algoDir = obj.ReadObj()

    if algoDir is None:
        print("coiuld not find algo " + algoName)
        return

    print(" algoDir %s ptCutGev %f " % (algoDir.GetName(), ptCutGev))

    name = version + "_" + algoDir.GetName()
    title = version + " " + algoDir.GetName().replace("_", " ")

    c1 = TCanvas('canvas_' + name, title, 200, 10, 700 * 2, 700)
    canvases.append(c1)
    c1.Divide(2, 1)
    c1.cd(1).SetGridx()
    c1.cd(1).SetGridy()
    c1.SetLogy()
    print('created canvas ' + c1.GetName())

    legend = TLegend(0.5, 0.6, 0.8, 0.8)
    legend.SetBorderSize(0)
    legend.SetTextSize(0.027)
    legend.SetHeader(title)
    legends.append(legend)

    rateResult = getRate(algoDir, ptCutGev, name + "_total")
    rateOnThresh = rateResult[0]

    candPt_rateCumul = rateResult[1]
    rateCumuls.append(candPt_rateCumul)
    candPt_rateCumul.SetLineColor(kBlack)
    candPt_rateCumul.GetYaxis().SetTitle("#events")
    candPt_rateCumul.Draw("hist")
    candPt_rateCumul.GetYaxis().SetRangeUser(10, 20000)
    print("added candPt_rateCumul " + candPt_rateCumul.GetName())

    legend.AddEntry(candPt_rateCumul, "total rate")

    print("total rateOnThresh %f" % (rateOnThresh))

    rateCumulStack = THStack("rateCumulStack_" + name, title)
    rateCumulStacks.append(rateCumulStack)

    totalRate = 0
    color = 2

    thisAcceptedMuonsPts = []
    for candCategory in candCategories:
        #categoryDir = histFile.Get("L1MuonAnalyzerOmtf/rate/" +  algoName + "/" + candCategory)
        categoryDir = algoDir.Get(candCategory)

        print("categoryDir " + categoryDir.GetName())

        rateResult = getRate(categoryDir, ptCutGev, name + "_" + candCategory)
        rateOnThresh = rateResult[0]

        rateVsCategory[candCategory].Fill(title + " " + str(ptCutGev) + " GeV",
                                          rateOnThresh)
        rateVsCategory[candCategory].SetFillColor(color)

        totalRate = totalRate + rateOnThresh
        print("%s rate %f " % (categoryDir.GetName(), rateOnThresh))

        candPt_rateCumul = rateResult[1]
        #candPt_rateCumul.SetFillColor(color)
        candPt_rateCumul.SetLineColor(color)

        #rateCumulStack.Add(candPt_rateCumul)
        rateCumuls.append(candPt_rateCumul)
        print("added candPt_rateCumul " + candPt_rateCumul.GetName())

        candPt_rateCumul.Draw("hist same")
        legend.AddEntry(candPt_rateCumul, candCategory)

        if rateResult.__len__() > 2:
            acceptedMuonsPt = rateResult[2]
            acceptedMuonsPt.SetLineColor(color)
            acceptedMuonsPts.append(acceptedMuonsPt)
            thisAcceptedMuonsPts.append(acceptedMuonsPt)

        color += 1
        if color == 5:
            color = 6

    legend.Draw()
    #rateCumulStack.Draw()

    c1.cd(2).SetGridx()
    c1.cd(2).SetGridy()

    first = True
    for acceptedMuonsPt in thisAcceptedMuonsPts:
        print "Drawing", acceptedMuonsPt.GetTitle()
        if first:
            acceptedMuonsPt.GetYaxis().SetRangeUser(0, 15)
            acceptedMuonsPt.Draw("hist")
        else:
            acceptedMuonsPt.Draw("hist same")
        first = False

    c1.Modified()
    c1.Update()
    print("totalRate %f" % (totalRate))
コード例 #26
0
class GQSummaryPlot:
    def __init__(self, name):
        self._name = name
        self._analyses = []
        self._dijet_data = {}
        self._legend_entries = {}
        self._graphs = {}
        self._limit_fills = {}
        self._GoMs = []
        self._vtype = "vector"
        self._style = {
            "default": {
                "line_color": 1,
                "line_width": 402,
                "line_style": 1,
                "marker_style": 20,
                "marker_size": 0,
                "marker_color": 1,
                "fill_style": 3004,
                "fill_color": 0,
                "alpha": 1.
            }
        }
        self._tranparency = {}

    # style = dict of <analysis name>:{"line_color":1, "marker_style":20, etc}
    # See the default option in __init__ for the full list of options
    def set_style(self, style):
        self._style.update(style)

    def set_vtype(self, vtype):
        vtype = vtype.lower()
        if not vtype in ["vector", "axial"]:
            raise ValueError(
                "[set_vtype] Argument vtype must be 'vector' or 'axial'")
        self._vtype = vtype

    def add_data(self,
                 dijet_data,
                 name,
                 legend,
                 truncate_gq=False,
                 truncate_gom=False,
                 min_gom=False):
        self._analyses.append(name)
        self._dijet_data[name] = dijet_data
        self._legend_entries[name] = legend

        if truncate_gq and truncate_gom:
            raise ValueError(
                "[GQSummaryPlot::add_data] ERROR : Cannot specify both truncate_gq and truncate_gom."
            )

        if truncate_gq:
            max_truncated_graphs = self.truncate_graph_gq(
                dijet_data.get_graph(), truncate_gq[1])
            truncated_graphs = []
            if truncate_gq[0] > 0:
                for tmpgraph in max_truncated_graphs:
                    truncated_graphs.extend(
                        self.truncate_graph_gq(tmpgraph,
                                               truncate_gq[0],
                                               invert=-1))
            else:
                truncated_graphs = max_truncated_graphs

            # If the truncation deleted all points, abandon
            if len(truncated_graphs) == 0:
                print "[GQSummaryPlot::add_data] ERROR : Applying truncate_gq resulted in an empty graph! Remove from the input list."
                print "[GQSummaryPlot::add_data] ERROR : truncate_gq = {}".format(
                    truncate_gq)
                dijet_data.get_graph().Print("all")
                sys.exit(1)

            # Save the new set of graphs
            for i, graph in enumerate(truncated_graphs):
                piece_name = name
                if i != 0:
                    piece_name += str(i)
                    self._analyses.append(piece_name)
                    self._style[piece_name] = self._style[name]
                    self._legend_entries[piece_name] = False
                self._graphs[piece_name] = truncated_graphs[i]
        elif truncate_gom:
            print "DEBUG : Truncating graph {} to range {}".format(
                name, truncate_gom)
            max_truncated_graphs = self.truncate_graph_gom(
                dijet_data.get_graph(), truncate_gom[1])
            truncated_graphs = []
            if truncate_gom[0] > 0:
                for tmpgraph in max_truncated_graphs:
                    truncated_graphs.extend(
                        self.truncate_graph_gom(tmpgraph,
                                                truncate_gom[0],
                                                invert=-1))
            else:
                truncated_graphs = max_truncated_graphs

            # If the truncation deleted all points, abandon
            if len(truncated_graphs) == 0:
                print "[GQSummaryPlot::add_data] ERROR : Applying truncate_gom resulted in an empty graph! Remove from the input list."
                print "[GQSummaryPlot::add_data] ERROR : truncate_gom = {}".format(
                    truncate_gom)
                dijet_data.get_graph().Print("all")
                sys.exit(1)

            # Save the new set of graphs
            for i, graph in enumerate(truncated_graphs):
                piece_name = name
                if i != 0:
                    piece_name += str(i)
                    self._analyses.append(piece_name)
                    self._style[piece_name] = self._style[name]
                    self._legend_entries[piece_name] = False
                self._graphs[piece_name] = truncated_graphs[i]
        else:
            self._graphs[name] = dijet_data.get_graph()

        #if max_gom_fill:
        #	self._limit_fills[name] = self.create_limit_gom_fill(dijet_data.get_graph(), max_gom_fill)
        #if max_gq_fill:
        #	self._limit_fills[name] = self.create_limit_gq_fill(dijet_data.get_graph(), max_gq_fill)

    # Add legend entry with no object
    def add_legend_only(self, name, legend_entry):
        self._legend_entries[name] = legend_entry
        self._analyses.append(name)
        self._graphs[name] = 0

    def set_width_curves(self, GoMs):
        self._GoMs = GoMs

    def style_graph(self, graph, name):
        if not name in self._style:
            print "[style_graph] ERROR : Analysis {} is not present in the style dict. Please add.".format(
                name)
            sys.exit(1)
        if "line_color" in self._style[name]:
            if "alpha" in self._style[name]:
                graph.SetLineColorAlpha(self._style[name]["line_color"],
                                        self._style[name]["alpha"])
            else:
                graph.SetLineColor(self._style[name]["line_color"])
        else:
            if "alpha" in self._style[name]:
                graph.SetLineColorAlpha(self._style["default"]["line_color"],
                                        self._style["default"]["alpha"])
            else:
                graph.SetLineColor(self._style["default"]["line_color"])
        if "line_style" in self._style[name]:
            graph.SetLineStyle(self._style[name]["line_style"])
        else:
            graph.SetLineStyle(self._style["default"]["line_style"])
        if "line_width" in self._style[name]:
            graph.SetLineWidth(self._style[name]["line_width"])
        else:
            graph.SetLineWidth(self._style["default"]["line_width"])
        if "marker_color" in self._style[name]:
            if "alpha" in self._style[name]:
                graph.SetMarkerColorAlpha(self._style[name]["marker_color"],
                                          self._style[name]["alpha"])
            else:
                graph.SetMarkerColor(self._style[name]["marker_color"])
        else:
            if "alpha" in self._style[name]:
                graph.SetMarkerColorAlpha(
                    self._style["default"]["marker_color"],
                    self._style["default"]["alpha"])
            else:
                graph.SetMarkerColor(self._style["default"]["marker_color"])
        if "marker_style" in self._style[name]:
            graph.SetMarkerStyle(self._style[name]["marker_style"])
        else:
            graph.SetMarkerStyle(self._style["default"]["marker_style"])
        if "marker_size" in self._style[name]:
            graph.SetMarkerSize(self._style[name]["marker_size"])
        else:
            graph.SetMarkerSize(self._style["default"]["marker_size"])
        if "fill_style" in self._style[name]:
            graph.SetFillStyle(self._style[name]["fill_style"])
        else:
            graph.SetFillStyle(self._style["default"]["fill_style"])
        if "fill_color" in self._style[name]:
            if "alpha" in self._style[name]:
                graph.SetFillColorAlpha(self._style[name]["fill_color"],
                                        self._style[name]["alpha"])
            else:
                graph.SetFillColor(self._style[name]["fill_color"])
        else:
            if "alpha" in self._style[name]:
                graph.SetFillColorAlpha(self._style["default"]["fill_color"],
                                        self._style["default"]["alpha"])
            else:
                graph.SetFillColor(self._style["default"]["fill_color"])

    # Returns a set of graphs with a maximum g_q (or minimum; specify invert=-1)
    def truncate_graph_gq(self, limit_graph, max_gq, invert=1):
        # Calculate the sets of x values for the new graphs
        limit_x = limit_graph.GetX()
        limit_y = limit_graph.GetY()
        x_points = [[]]
        y_points = [[]]
        if invert * limit_y[0] < invert * max_gq:
            x_points[-1].append(limit_x[0])
            y_points[-1].append(limit_y[0])
        for i in xrange(1, len(limit_x)):
            if invert * limit_y[i - 1] < invert * max_gq and invert * limit_y[
                    i] < invert * max_gq:
                x_points[-1].append(limit_x[i])
                y_points[-1].append(limit_y[i])
            elif invert * limit_y[i - 1] > invert * max_gq and invert * limit_y[
                    i] < invert * max_gq:  # limit crosses max_gq going down: new set
                print "Solving for bad-to-good crossing (max_gq={}).".format(
                    max_gq)
                print "(m1, gq1) = ({}, {})".format(limit_x[i - 1],
                                                    limit_y[i - 1])
                print "(m2, gq2) = ({}, {})".format(limit_x[i], limit_y[i])

                if len(x_points[-1]) >= 1:
                    x_points.append([])
                    y_points.append([])
                # Calculate crossing point
                x_cross_array = fsolve(lambda x: limit_graph.Eval(x) - max_gq,
                                       (limit_x[i - 1] + limit_x[i]) / 2.)
                if len(x_cross_array) != 1:
                    raise ValueError("ERROR : Found more than one crossing!")
                x_cross = x_cross_array[0]
                print "Found crossing (m, gq) = ({}, {})".format(
                    x_cross, limit_graph.Eval(x_cross))
                '''
				# Old method: analytical solution by hand
				# max_gq = limit_y[i-1] + (limit_y[i]-limit_y[i-1])/(limit_x[i]-limit_x[i-1]) * dx
				slope = (limit_y[i]-limit_y[i-1])/(limit_x[i]-limit_x[i-1])
				dx = (max_gq - limit_y[i-1]) / slope
				x_cross = limit_x[i-1] + dx
				x_points[-1].append(x_cross)
				x_points[-1].append(limit_x[i])
				y_points[-1].append(limit_graph.Eval(x_cross))
				y_points[-1].append(limit_graph.Eval(limit_x[i]))
				'''
                x_points[-1].append(x_cross)
                x_points[-1].append(limit_x[i])
                y_points[-1].append(limit_graph.Eval(x_cross))
                y_points[-1].append(limit_graph.Eval(limit_x[i]))

            elif invert * limit_y[i - 1] < invert * max_gq and invert * limit_y[
                    i] > invert * max_gq:  # limit crosses max_gq going up: end this set with crossing value
                print "Solving for good-to-bad crossing (max_gq={}).".format(
                    max_gq)
                print "(m1, gq1) = ({}, {})".format(limit_x[i - 1],
                                                    limit_y[i - 1])
                print "(m2, gq2) = ({}, {})".format(limit_x[i], limit_y[i])
                # Calculate crossing point
                x_cross_array = fsolve(lambda x: limit_graph.Eval(x) - max_gq,
                                       (limit_x[i - 1] + limit_x[i]) / 2.)
                if len(x_cross_array) != 1:
                    raise ValueError("ERROR : Found more than one crossing!")
                x_cross = x_cross_array[0]
                # max_gq = limit_y[i-1] + (limit_y[i]-limit_y[i-1])/(limit_x[i]-limit_x[i-1]) * dx
                '''
				# Old method: analytical solution by hand
				slope = (limit_y[i]-limit_y[i-1])/(limit_x[i]-limit_x[i-1])
				dx = (max_gq - limit_y[i-1]) / slope
				x_cross = limit_x[i-1] + dx
				'''
                x_points[-1].append(x_cross)
                y_points[-1].append(limit_graph.Eval(x_cross))
                print "Found crossing (m, gq) = ({}, {})".format(
                    x_cross, limit_graph.Eval(x_cross))
            else:  # Both above limit: ignore point
                pass

        # Convert sets of points to graphs
        new_graphs = []
        for igraph in xrange(len(x_points)):
            if len(x_points[igraph]) == 0:
                print "[gq_summary_plot::truncate_graph_gq] WARNING : Graph has zero points".format(
                    self._name)
                print x_points
                print y_points
            else:
                new_graphs.append(TGraph(len(x_points[igraph])))
                for ipoint in xrange(len(x_points[igraph])):
                    new_graphs[igraph].SetPoint(ipoint,
                                                x_points[igraph][ipoint],
                                                y_points[igraph][ipoint])
        return new_graphs

    # Returns a set of graphs with a maximum Gamma/M (or minimum; specify invert=-1)
    def truncate_graph_gom(self, limit_graph, max_gom, invert=1):
        # Calculate the sets of x values for the new graphs
        limit_x = limit_graph.GetX()
        limit_y = limit_graph.GetY()
        limit_gom = [
            Gamma_qq_tot(limit_y[i], limit_x[i], "vector") / limit_x[i]
            for i in xrange(limit_graph.GetN())
        ]
        x_points = [[]]
        y_points = [[]]
        if invert * limit_gom[0] < invert * max_gom:
            x_points[-1].append(limit_x[0])
            y_points[-1].append(limit_y[0])
        for i in xrange(1, len(limit_x)):
            if invert * limit_gom[i -
                                  1] < invert * max_gom and invert * limit_gom[
                                      i] < invert * max_gom:
                x_points[-1].append(limit_x[i])
                y_points[-1].append(limit_y[i])
            elif invert * limit_gom[
                    i - 1] > invert * max_gom and invert * limit_gom[
                        i] < invert * max_gom:  # limit crosses max_gom going down: new set
                if len(x_points[-1]) >= 1:
                    x_points.append([])
                    y_points.append([])

                # Calculate crossing point
                print "Solving for good-to-bad crossing (max_gom={}).".format(
                    max_gom)
                print "(m1, gq1, gom1) = ({}, {}, {})".format(
                    limit_x[i - 1], limit_y[i - 1], limit_gom[i - 1])
                print "(m2, gq2, gom2) = ({}, {}, {})".format(
                    limit_x[i], limit_y[i], limit_gom[i])
                x_cross_array = fsolve(
                    lambda x: Gamma_qq_tot(limit_graph.Eval(x), x, "vector") /
                    x - max_gom, (limit_x[i - 1] + limit_x[i]) / 2.)
                if len(x_cross_array) != 1:
                    raise ValueError("ERROR : Found more than one crossing!")
                x_cross = x_cross_array[0]
                print "Found crossing (m, gq, gom) = ({}, {}, {})".format(
                    x_cross, limit_graph.Eval(x_cross),
                    Gamma_qq_tot(limit_graph.Eval(x_cross), x_cross, "vector")
                    / x_cross)
                '''
				# Old method: analytical solution by hand
				# max_gom = limit_y[i-1] + (limit_y[i]-limit_y[i-1])/(limit_x[i]-limit_x[i-1]) * dx
				slope = (limit_y[i]-limit_y[i-1])/(limit_x[i]-limit_x[i-1])
				dx = (max_gom - limit_y[i-1]) / slope
				x_cross = limit_x[i-1] + dx
				x_points[-1].append(x_cross)
				x_points[-1].append(limit_x[i])
				y_points[-1].append(limit_graph.Eval(x_cross))
				y_points[-1].append(limit_graph.Eval(limit_x[i]))
				'''
                x_points[-1].append(x_cross)
                x_points[-1].append(limit_x[i])
                y_points[-1].append(limit_graph.Eval(x_cross))
                y_points[-1].append(limit_graph.Eval(limit_x[i]))

            elif invert * limit_gom[
                    i - 1] < invert * max_gom and invert * limit_gom[
                        i] > invert * max_gom:  # limit crosses max_gom going up: end this set with crossing value
                # Calculate crossing point
                print "Solving for good-to-bad crossing (max_gom={}).".format(
                    max_gom)
                print "(m1, gq1, gom1) = ({}, {}, {})".format(
                    limit_x[i - 1], limit_y[i - 1], limit_gom[i - 1])
                print "(m2, gq2, gom2) = ({}, {}, {})".format(
                    limit_x[i], limit_y[i], limit_gom[i])
                x_cross_array = fsolve(
                    lambda x: Gamma_qq_tot(limit_graph.Eval(x), x, "vector") /
                    x - max_gom, (limit_x[i - 1] + limit_x[i]) / 2.)
                if len(x_cross_array) != 1:
                    raise ValueError("ERROR : Found more than one crossing!")
                x_cross = x_cross_array[0]
                print "Found crossing (m, gq, gom) = ({}, {}, {})".format(
                    x_cross, limit_graph.Eval(x_cross),
                    Gamma_qq_tot(limit_graph.Eval(x_cross), x_cross, "vector")
                    / x_cross)
                # max_gom = limit_y[i-1] + (limit_y[i]-limit_y[i-1])/(limit_x[i]-limit_x[i-1]) * dx
                '''
				# Old method: analytical solution by hand
				slope = (limit_y[i]-limit_y[i-1])/(limit_x[i]-limit_x[i-1])
				dx = (max_gom - limit_y[i-1]) / slope
				x_cross = limit_x[i-1] + dx
				'''
                x_points[-1].append(x_cross)
                y_points[-1].append(limit_graph.Eval(x_cross))
            else:  # Both above limit: ignore point
                pass

        # Convert sets of points to graphs
        new_graphs = []
        for igraph in xrange(len(x_points)):
            if len(x_points[igraph]) == 0:
                print "[gq_summary_plot::truncate_graph_gom] WARNING : Graph has zero points : {}".format(
                    self._name)
                print x_points
                print y_points
            else:
                new_graphs.append(TGraph(len(x_points[igraph])))
                for ipoint in xrange(len(x_points[igraph])):
                    new_graphs[igraph].SetPoint(ipoint,
                                                x_points[igraph][ipoint],
                                                y_points[igraph][ipoint])
        return new_graphs

    def draw(
        self,
        logx=False,
        logy=False,
        x_title="M_{Z'} [GeV]",
        y_title="g'_{q}",
        x_range=[40., 7000.],
        y_range=[0, 1.45],
        canvas_dim=[1800, 1200],
        canvas_rm=0.32,
        legend_coords=[0.69, 0.17, 0.99, 0.9],
        draw_cms=None,
        legend_text_size=0.028,
        legend_ncolumns=None,
        legend_obsexp=False,  # Add a solid and dotted line to legend for obs and exp
        legend_header="#bf{95% CL exclusions}",
        draw_Z_constraint=False,
        z_width_legend_entry="#splitline{Z width (all #Gamma_{Z'}/M_{Z'})}{#it{[arXiv:1404.3947]}}",
        draw_upsilon_constraint=False,
        upsilon_width_legend_entry="#splitline{#Upsilon width (all #Gamma_{Z'}/M_{Z'})}{#it{[arXiv:1404.3947]}}",
        gom_x=None,  # x coordinate for Gamma/M labels
        model_label=False,  # Add a string specifying the model on the plot
        gom_fills=False,  # Draw limit fills including upper boundaries
        conference_label=False  # Draw "timestamp" label, i.e. "Moriond 2018"
    ):
        canvas_name = "c_{}_{}_{}{}".format(self._name,
                                            ("logx" if logx else "linearx"),
                                            ("logy" if logy else "lineary"),
                                            ("_gomfills" if gom_fills else ""))
        self._canvas = TCanvas(canvas_name, canvas_name, canvas_dim[0],
                               canvas_dim[1])
        ROOT.gStyle.SetPadTickX(1)
        ROOT.gStyle.SetPadTickY(1)
        self._canvas.SetLeftMargin(0.09)
        self._canvas.SetBottomMargin(0.12)
        self._canvas.SetTopMargin(0.075)
        self._canvas.SetRightMargin(canvas_rm)

        if logx:
            self._canvas.SetLogx()
        if logy:
            self._canvas.SetLogy()
        self._canvas.SetTicks(1, 1)
        self._canvas.cd()
        self._legend = TLegend(legend_coords[0], legend_coords[1],
                               legend_coords[2], legend_coords[3])
        self._legend.SetFillStyle(0)
        self._legend.SetBorderSize(0)
        self._legend.SetTextSize(legend_text_size)
        if legend_ncolumns:
            self._legend.SetNColumns(legend_ncolumns)

        # Legend headers and obs/exp lines
        self._legend.SetHeader(legend_header)
        if legend_obsexp:
            self._g_obs_dummy = TGraph(10)
            self._g_obs_dummy.SetLineStyle(1)
            self._g_obs_dummy.SetLineColor(1)
            self._g_obs_dummy.SetLineWidth(402)
            self._g_obs_dummy.SetMarkerStyle(20)
            self._g_obs_dummy.SetMarkerSize(0)
            self._g_obs_dummy.SetFillStyle(3004)
            self._g_obs_dummy.SetFillColor(1)
            self._legend.AddEntry(self._g_obs_dummy, "Observed", "lf")
            self._g_exp_dummy = TGraph(10)
            self._g_exp_dummy.SetLineStyle(2)
            self._g_exp_dummy.SetLineColor(1)
            self._g_exp_dummy.SetLineWidth(402)
            self._g_exp_dummy.SetMarkerStyle(20)
            self._g_exp_dummy.SetMarkerSize(0)
            self._legend.AddEntry(self._g_exp_dummy, "Expected", "l")

        self._frame = TH1D("frame", "frame", 100, x_range[0], x_range[1])
        self._frame.SetDirectory(0)
        self._frame.GetYaxis().SetRangeUser(y_range[0], y_range[1])
        self._frame.GetXaxis().SetTitle(x_title)
        self._frame.GetYaxis().SetTitle(y_title)
        self._frame.Draw("axis")
        if logx:
            self._frame.GetXaxis().SetMoreLogLabels()
            self._frame.GetXaxis().SetNdivisions(10)
            self._frame.GetXaxis().SetNoExponent(True)
        self._frame.GetXaxis().SetTitleOffset(1.)
        self._frame.GetXaxis().SetTitleSize(0.05)
        self._frame.GetXaxis().SetLabelSize(0.04)
        self._frame.GetYaxis().SetTitleOffset(0.8)
        self._frame.GetYaxis().SetTitleSize(0.05)
        self._frame.GetYaxis().SetLabelSize(0.04)
        #if logy:
        #	self._frame.GetYaxis().SetMoreLogLabels()

        # Draw limit fills first, if any
        for name, limit_fill in self._limit_fills.iteritems():
            self._limit_fills[name].SetFillStyle(3003)
            self._limit_fills[name].SetFillColor(
                self._style[name]["fill_color"])
            self._limit_fills[name].Draw("F")

        legend_entry_count = 0
        for analysis_name in self._analyses:
            if self._graphs[analysis_name]:
                self.style_graph(self._graphs[analysis_name], analysis_name)
                self._graphs[analysis_name].Draw("lp")
                if self._legend_entries[analysis_name] != False:
                    self._legend.AddEntry(self._graphs[analysis_name],
                                          self._legend_entries[analysis_name],
                                          "l")
                    legend_entry_count += 1
            else:
                self._legend.AddEntry(0, self._legend_entries[analysis_name],
                                      "")
                legend_entry_count += 1

        # Add an empty entry if needed, to put Z/Y constraints on the same line
        if legend_entry_count % 2 == 1:
            self._legend.AddEntry(0, "", "")

        if draw_Z_constraint:
            self._tf_Z_constraint = TF1("Z_constraint", gq_Z_constraint,
                                        x_range[0], x_range[1], 0)
            self._tf_Z_constraint.SetNpx(1000)
            self._tf_Z_constraint.SetLineColor(17)
            ROOT.gStyle.SetLineStyleString(9, "40 20")
            self._tf_Z_constraint.SetLineStyle(9)
            self._tf_Z_constraint.SetLineWidth(2)
            self._tf_Z_constraint.Draw("same")
            self._legend.AddEntry(self._tf_Z_constraint, z_width_legend_entry,
                                  "l")

        if draw_upsilon_constraint:
            self._tf_upsilon_constraint = TF1("upsilon_constraint",
                                              gq_upsilon_constraint,
                                              x_range[0], x_range[1], 0)
            self._tf_upsilon_constraint.SetNpx(1000)
            self._tf_upsilon_constraint.SetLineColor(17)
            ROOT.gStyle.SetLineStyleString(11, "20 10")
            self._tf_upsilon_constraint.SetLineStyle(11)
            self._tf_upsilon_constraint.SetLineWidth(2)
            self._tf_upsilon_constraint.Draw("same")
            self._legend.AddEntry(self._tf_upsilon_constraint,
                                  upsilon_width_legend_entry, "l")

        # Lines at fixed Gamma / M
        self._GoM_tf1s = {}
        self._GoM_labels = {}
        for i, GoM in enumerate(self._GoMs):
            self._GoM_tf1s[GoM] = TF1(
                "tf1_gq_{}".format(GoM),
                lambda x, this_gom=GoM: gom_to_gq(this_gom, x[0], self._vtype),
                x_range[0],
                x_range[1],
                0)  #
            self._GoM_tf1s[GoM].SetLineColor(ROOT.kGray + 1)
            self._GoM_tf1s[GoM].SetLineStyle(ROOT.kDashed)
            self._GoM_tf1s[GoM].SetLineWidth(1)
            self._GoM_tf1s[GoM].Draw("same")

            # TLatex for Gamma / M
            if gom_x:
                label_x = gom_x
            else:
                if logx:
                    label_xfrac = 0.05
                else:
                    label_xfrac = 0.864
                label_x = (x_range[1] - x_range[0]) * label_xfrac + x_range[0]
            if logy:
                label_y = self._GoM_tf1s[GoM].Eval(label_x) * 0.85
                gom_text = "#Gamma_{{Z'}}#kern[-0.6]{{ }}/#kern[-0.7]{{ }}M_{{Z'}}#kern[-0.7]{{ }}=#kern[-0.7]{{ }}{}%".format(
                    int(GoM * 100))
            else:
                # label_y = self._GoM_tf1s[GoM].Eval(label_x) - 0.085 # For labels under the line
                label_y = self._GoM_tf1s[GoM].Eval(
                    label_x) + 0.05  # For labels over the line
                gom_text = "#frac{{#Gamma}}{{M_{{Z'}}}} = {}%".format(
                    int(GoM * 100))
            self._GoM_labels[GoM] = TLatex(label_x, label_y, gom_text)
            if logy:
                self._GoM_labels[GoM].SetTextSize(0.028)
            else:
                self._GoM_labels[GoM].SetTextSize(0.027)
            self._GoM_labels[GoM].SetTextColor(ROOT.kGray + 1)
            self._GoM_labels[GoM].Draw("same")

        # Vector label
        if model_label:
            self._model_label = TLatex(model_label["x"], model_label["y"],
                                       model_label["text"])
            if not "size_modifier" in model_label.keys():
                model_label["size_modifier"] = 1.
            self._model_label.SetTextSize(0.04 * model_label["size_modifier"])
            self._model_label.SetTextColor(1)
            self._model_label.Draw("same")

        # Legend last, to be on top of lines
        self._legend.Draw()

        if draw_cms:
            CMSLabel(self._canvas,
                     extra_text=draw_cms,
                     halign="left",
                     valign="top",
                     in_frame=False)

        if conference_label:
            self._conference_label = TLatex(conference_label["x"],
                                            conference_label["y"],
                                            conference_label["text"])
            self._conference_label.SetTextSize(0.045)
            self._conference_label.SetTextColor(1)
            self._conference_label.Draw("same")

        # Redraw axis
        self._frame.Draw("axis same")

    def cd(self):
        self._canvas.cd()

    def save(self, folder, exts=["pdf"]):
        exts = [x.lower() for x in exts]
        if "png" in exts:
            eps_created = False
        for ext in exts:
            if ext == "png":
                eps_filename = "{}/{}.{}".format(folder,
                                                 self._canvas.GetName(), "eps")
                if not eps_created:
                    self._canvas.SaveAs(eps_filename)
                    eps_created = True
                png_filename = "{}/{}.{}".format(folder,
                                                 self._canvas.GetName(), "png")
                os.system("convert -trim -density 300 {} {}".format(
                    eps_filename, png_filename))
            else:
                self._canvas.SaveAs("{}/{}.{}".format(folder,
                                                      self._canvas.GetName(),
                                                      ext))
            if ext == "eps":
                eps_created = True
コード例 #27
0
def main():

    c1 = TCanvas('roc', 'roc', 200, 10, 700, 500)
    c1.cd()

    if chisquare:

        points_0 = FindCurveChi2(TFile("hazel_sig_smear0.root"),
                                 TFile("hazel_bkg_smear0.root"))
        points_1 = FindCurveChi2(TFile("hazel_sig_smear1.root"),
                                 TFile("hazel_bkg_smear1.root"))
        points_2 = FindCurveChi2(TFile("hazel_sig_smear2.root"),
                                 TFile("hazel_bkg_smear2.root"))
        points_f = FindCurveChi2(TFile("hazel_sig_smearf.root"),
                                 TFile("hazel_bkg_smearf.root"))

    else:

        ####### No Smearing ##############
        points_0 = FindCurveDTheta(TFile("hazel_sig_smear0.root"),
                                   TFile("hazel_bkg_smear0.root"))
        ####### 1 Strip Smearing ##############
        points_1 = FindCurveDTheta(TFile("hazel_sig_smear1.root"),
                                   TFile("hazel_bkg_smear1.root"))
        ####### 2 Strip Smearing ##############
        points_2 = FindCurveDTheta(TFile("hazel_sig_smear2.root"),
                                   TFile("hazel_bkg_smear2.root"))
        points_f = FindCurveDTheta(TFile("hazel_sig_smearf.root"),
                                   TFile("hazel_bkg_smearf.root"))

    signal_eff_0 = points_0[0]
    background_rej_0 = points_0[1]
    n0 = len(signal_eff_0)

    signal_eff_1 = points_1[0]
    background_rej_1 = points_1[1]
    n1 = len(signal_eff_1)

    signal_eff_2 = points_2[0]
    background_rej_2 = points_2[1]
    n2 = len(signal_eff_2)

    signal_eff_f = points_f[0]
    background_rej_f = points_f[1]
    nf = len(signal_eff_f)

    if hist:

        h_sig_0 = TH1F("signal_dtheta", "signal dtheta", 1000, -0.05, 0.05)
        h_bkg_0 = TH1F("background_0", "background dtheta", 1000, -0.05, 0.05)
        for i in points_0[2]:
            h_sig_0.Fill(i)
        for i in points_0[3]:
            h_bkg_0.Fill(i)

        h_sig_1 = TH1F("signal_1", "signal_1", 1000, -0.05, 0.05)
        h_bkg_1 = TH1F("background_1", "background_1", 1000, -0.05, 0.05)
        for i in points_1[2]:
            h_sig_1.Fill(i)
        for i in points_1[3]:
            h_bkg_1.Fill(i)

        h_sig_2 = TH1F("signal_2", "signal_2", 1000, -0.05, 0.05)
        h_bkg_2 = TH1F("background_2", "background_2", 10000, -0.05, 0.05)
        for i in points_2[2]:
            h_sig_2.Fill(i)
        for i in points_2[3]:
            h_bkg_2.Fill(i)

        h_sig_f = TH1F("signal_f", "signal_f", 1000, -0.05, 0.05)
        h_bkg_f = TH1F("background_f", "background_f", 1000, -0.05, 0.05)
        for i in points_f[2]:
            h_sig_f.Fill(i)
        for i in points_f[3]:
            h_bkg_f.Fill(i)

    c1.SetGrid()

    gr0 = TGraph(n0, signal_eff_0, background_rej_0)
    gr1 = TGraph(n1, signal_eff_1, background_rej_1)
    gr2 = TGraph(n2, signal_eff_2, background_rej_2)
    grf = TGraph(nf, signal_eff_f, background_rej_f)

    gr0.GetXaxis().SetTitle('Signal Efficiency')
    gr0.GetYaxis().SetTitle('1 - Background Efficiency')
    if chisquare:
        gr0.SetTitle('ROC Curve for Chi2/NDF')
    else:
        gr0.SetTitle('ROC Curve for Delta Theta')

    gr0.SetLineColor(46)
    gr0.SetLineWidth(3)
    gr0.SetMarkerStyle(4)
    gr0.SetMarkerColor(2)

    gr1.SetLineColor(30)
    gr1.SetLineWidth(3)
    gr1.SetMarkerStyle(21)
    gr1.SetMarkerColor(3)

    gr2.SetLineColor(38)
    gr2.SetLineWidth(3)
    gr2.SetMarkerStyle(29)
    gr2.SetMarkerColor(4)

    grf.SetLineColor(12)
    grf.SetLineWidth(3)
    grf.SetMarkerStyle(31)
    grf.SetMarkerColor(1)

    gr0.Draw('APL')
    gr1.Draw('PL')
    gr2.Draw('PL')
    grf.Draw('PL')

    legend = ROOT.TLegend(0.1, 0.3, 0.48, 0.5)
    legend.AddEntry(gr0, '1M events, 0 strip smearing', "lp")
    legend.AddEntry(gr1, '1M events, 1 strip smearing', "lp")
    legend.AddEntry(gr2, '1M events, 2 strip smearing', "lp")
    legend.AddEntry(grf, '1M events, function smearing', "lp")
    legend.Draw()

    c1.Update()
    if chisquare:
        c1.SaveAs("%s.pdf" % (c1.GetName() + "_chi2"))
    else:
        c1.SaveAs("%s.pdf" % (c1.GetName() + "_dtheta"))

    if hist:

        c2 = TCanvas('signal_dtheta', 'signal_dtheta')
        c2.cd()
        h_sig_0.Draw("hist")
        h_sig_1.SetLineColor(2)
        h_sig_1.Draw("hist same")
        h_sig_2.SetLineColor(3)
        h_sig_2.Draw("hist same")
        h_sig_f.SetLineColor(1)
        h_sig_f.Draw("hist same")
        legend2 = ROOT.TLegend(0.1, 0.7, 0.48, 0.9)
        legend2.AddEntry(h_sig_0, '0 strip smearing', "l")
        legend2.AddEntry(h_sig_1, '1 strip smearing', "l")
        legend2.AddEntry(h_sig_2, '2 strip smearing', "l")
        legend2.AddEntry(h_sig_f, 'function smearing', "l")
        legend2.Draw()
        c2.Update()
        c2.SaveAs("%s.pdf" % (c2.GetName()))

        c3 = TCanvas('background_dtheta', 'background_dtheta')
        c3.cd()
        h_bkg_0.Draw("hist")
        h_bkg_1.SetLineColor(2)
        h_bkg_1.Draw("hist same")
        h_bkg_2.SetLineColor(3)
        h_bkg_2.Draw("hist same")
        h_bkg_f.SetLineColor(1)
        h_bkg_f.Draw("hist same")
        legend3 = ROOT.TLegend(0.1, 0.7, 0.48, 0.9)
        legend3.AddEntry(h_bkg_0, '0 strip smearing', "l")
        legend3.AddEntry(h_bkg_1, '1 strip smearing', "l")
        legend3.AddEntry(h_bkg_2, '2 strip smearing', "l")
        legend3.AddEntry(h_bkg_f, 'function smearing', "l")
        legend3.Draw()
        c3.Update()
        c3.SaveAs("%s.pdf" % (c3.GetName()))
コード例 #28
0
ファイル: core.py プロジェクト: efilmer/heppyold
class ViewPane(object):  #a graphics window
    nviews = 0

    def __init__(self,
                 name,
                 projection,
                 nx,
                 xmin,
                 xmax,
                 ny,
                 ymin,
                 ymax,
                 dx=600,
                 dy=600,
                 subscreens=None):
        '''arguments
        @name  name = title name for the pane
        @param projection = name of the projection (string)
                            eg one of 'xy', 'yz', 'xz' ,'ECAL_thetaphi', 'HCAL_thetaphi'
        @param nx: points on x axis
        @param xmin: lower left corner x for ROOT hists
        @param xmax: upper right corner x for ROOT hists
        @param nx: points on x axis
        @param ymin: lower left corner y for ROOT hists
        @param ymax: upper right corner y for ROOT hists
        @param dx: horizontal size of each subscreen in pixels
        @param dy: vertical size of each subscreen in pixels
        @param subscreens: list of names of the subscreens
        '''
        self.projection = projection
        self.hists = dict()
        self.registered = dict()
        self.locked = dict()
        tx = 50 + self.__class__.nviews * (dx + 10)
        ty = 50
        width = 1
        height = 1

        #decide how to subdivide the window for the subscreens
        #normally split screen into horizontally side by side
        self.subscreens = dict()
        if subscreens is None:
            #The projection name and the subscreen name get concatenated. eg "xy: simulated",
            #when there is only one subscreen the subscreen string is not needed so is set to ""
            subscreens = [""]
        self.nsubscreens = len(subscreens)
        width = width * self.nsubscreens  # normal case

        self.canvas = TCanvas(name, name, tx, ty, width * dx, height * dy)
        self.canvas.SetRightMargin(0.)
        self.canvas.SetLeftMargin(0.)
        self.canvas.SetTopMargin(0.)
        self.canvas.SetBottomMargin(0.)
        #command to divide the window up into width*height subscreens
        self.canvas.Divide(width, height)

        #manufacture the subscreens
        for x in range(0, self.nsubscreens):
            c1 = self.canvas.cd(x + 1)
            margin = 0.05
            c1.SetLeftMargin(margin)
            c1.SetRightMargin(margin)
            c1.SetTopMargin(margin)
            c1.SetBottomMargin(margin)
            panename = name + ": " + subscreens[x]
            #create a ViewPad, this is the subscreen on which outputs will be plotted.
            #side is used to index the subscreens
            self.subscreens[x] = ViewPad(panename,
                                         name,
                                         nx,
                                         xmin,
                                         xmax,
                                         ny,
                                         ymin,
                                         ymax,
                                         side=x)

        self.__class__.nviews += 1

    def register(self, obj, layer, clearable=True, sides=None):
        ''' the object will be registered in selected subscreens
            @param obj: thing to be plotted, this will have a draw function. Often will be
                        a ROOT type object such as TGraph, TEllipse etc
            @param layer: what layer in plot to use. Higher layers are plotted **on top- check**
            @param clearable: not sure
            @param sides: if None will send to all subscreens, otherwise side=0 is first/left subscreen
                          side = 1 is second (right) subscreen
        '''
        if sides is None:
            sides = range(0, len(self.subscreens))
        for x in sides:
            self.subscreens[x].register(obj, layer, clearable)

    def clear(self):
        for p in self.subscreens.itervalues():
            p.clear()

    def draw(self):
        '''draw all subscreens
        '''
        for x in range(0, self.nsubscreens):
            if self.canvas is None:
                pass
            else:
                self.canvas.cd(x + 1)
                self.subscreens[x].draw()
                self.canvas.Update()

    def zoom(self, xmin, xmax, ymin, ymax):
        '''intended to be called from the command line
            all subscreens are zoomed
        @param xmin: lower left corner x for the zoomed in screen using hist coordinates
        @param xmax: upper right corner x for the zoomed in screen using hist coordinates
        @param ymin: lower left corner y for the zoomed in screen using hist coordinates
        @param ymax: upper right corner y for the zoomed in screen using hist coordinates
        '''
        for p in self.subscreens.itervalues():
            p.zoom(xmin, xmax, ymin, ymax)
        self.draw()

    def unzoom(self):
        '''intended to be called from the command line
            all subscreens are unzoomed
         '''
        for p in self.subscreens.itervalues():
            p.unzoom()
        self.draw()

    def save(self, outdir, filename, filetype):
        '''write the screen to file 
            @param outdir: directory for output files
            @param filename: base of the final filename eg "event_0" would end up with outputs
                             such as "****xy_event_0_simulation****""
            @param filetype: eg png file output. ***what else is supported***
            '''
        fname = '{outdir}/{name}.{filetype}'.format(outdir=outdir,
                                                    name=filename +
                                                    self.canvas.GetName(),
                                                    filetype=filetype)
        self.canvas.SaveAs(fname)
コード例 #29
0
ファイル: projections_ML.py プロジェクト: afortman/MMTP_ML
                                    for plane in otherplanes:
                                        branches[plane[0]][0] = float(
                                            randint(0, 11))
                                    scores.append(reader.EvaluateMVA(ML))
                                MLscore = sum(scores) / float(len(scores))

                            plane_y.append(float(strip1))
                            plane_x.append(float(strip2))
                            MLscores.append(MLscore)

                    ########## Make canvases, draw plots, and save them
                    c = TCanvas(
                        sample[0] + "_" + planey[1] + "vs" + planex[1] + "vs" +
                        ML, sample[0] + "_" + planey[1] + "vs" + planex[1] +
                        "vs" + ML)
                    gr = TGraph2D(len(MLscores), plane_x, plane_y, MLscores)
                    gr.SetName(sample[1] + " " + planey[1] + " vs " +
                               planex[1] + " vs " + ML + " score")
                    gr.Draw("COLZ")
                    c.Update()
                    gr.SetTitle(sample[1] + " " + planey[1] + " vs " +
                                planex[1] + " vs " + ML + " score")
                    gr.GetXaxis().SetTitle(planex[1])
                    gr.GetYaxis().SetTitle(planey[1])
                    gr.GetZaxis().SetTitle(ML + " score")
                    gr.GetZaxis().SetTitleOffset(1.2)

                    d_out.cd()
                    c.Write()
                    c.SaveAs(folder + "/%s.pdf" % (c.GetName()))
コード例 #30
0
ファイル: eff_roc.py プロジェクト: alexandertuna/MMTP_ML
gr4.SetLineColor(6)
gr4.SetLineWidth(1)
gr4.SetMarkerStyle(49)
gr4.SetMarkerColor(6)

gr5.SetLineColor(7)
gr5.SetLineWidth(1)
gr5.SetMarkerStyle(39)
gr5.SetMarkerColor(7)

gr0.Draw('APL')
gr1.Draw('PL')
gr2.Draw('PL')
gr3.Draw('PL')
gr4.Draw('PL')
gr5.Draw('PL')

legend = ROOT.TLegend(0.1, 0.1, 0.45, 0.25)
legend.SetNColumns(2)
legend.AddEntry(gr0, 'DNN', "lp")
legend.AddEntry(gr3, 'kNN', "lp")
legend.AddEntry(gr1, 'BDT', "lp")
legend.AddEntry(gr4, 'Delta Theta', "lp")
legend.AddEntry(gr2, 'MLP', "lp")
legend.AddEntry(gr5, 'Chi Squared', "lp")
legend.Draw()

c1.Update()

c1.SaveAs("%s.pdf" % (c1.GetName() + "_1M_" + str(options.n)))