コード例 #1
0
    def normalizingTransformation(self, repr=None):
        """Returns a linear transformation that shifts the center of mass
        of the object to the coordinate origin and makes its
        principal axes of inertia parallel to the three coordinate
        axes.

        A specific representation can be chosen by setting |repr| to
          Ir    : x y z <--> b c a
          IIr   : x y z <--> c a b
          IIIr  : x y z <--> a b c
          Il    : x y z <--> c b a
          IIl   : x y z <--> a c b
          IIIl  : x y z <--> b a c
        """
        from Scientific.LA import determinant
        cm, inertia = self.centerAndMomentOfInertia()
        ev, diag = inertia.diagonalization()
        if determinant(diag.array) < 0:
            diag.array[0] = -diag.array[0]
        if repr != None:
            seq = Numeric.argsort(ev)
            if repr == 'Ir':
                seq = Numeric.array([seq[1], seq[2], seq[0]])
            elif repr == 'IIr':
                seq = Numeric.array([seq[2], seq[0], seq[1]])
            elif repr == 'Il':
                seq = Numeric.seq[2::-1]
            elif repr == 'IIl':
                seq[1:3] = Numeric.array([seq[2], seq[1]])
            elif repr == 'IIIl':
                seq[0:2] = Numeric.array([seq[1], seq[0]])
            elif repr != 'IIIr':
                print 'unknown representation'
            diag.array = Numeric.take(diag.array, seq)
        return Transformation.Rotation(diag) * Transformation.Translation(-cm)
コード例 #2
0
 def rotateAroundAxis(self, point1, point2, angle):
     """Rotates the object by the given |angle| around the axis
     that passes through |point1| and |point2|"""
     tr1 = Transformation.Translation(-point1)
     tr2 = Transformation.Rotation(point2 - point1, angle)
     tr3 = tr1.inverse()
     self.applyTransformation(tr3 * tr2 * tr1)
コード例 #3
0
 def rotateAroundCenter(self, axis_direction, angle):
     """Rotates the object by the given |angle| around an axis
     that passes through its center of mass and has the given
     |direction|."""
     cm = self.centerOfMass()
     t = Transformation.Translation(cm) * \
         Transformation.Rotation(axis_direction, angle) * \
         Transformation.Translation(-cm)
     self.applyTransformation(t)
コード例 #4
0
 def __init__(self, attr, rotation, translation, reference_point):
     VRMLObject.__init__(self, attr)
     if rotation is None:
         rotation = Transformation.Rotation(ez, 0.)
     else:
         rotation = apply(Transformation.Rotation, rotation)
     if translation is None:
         translation = Transformation.Translation(Vector(0., 0., 0.))
     else:
         translation = Transformation.Translation(translation)
     self.transformation = translation * rotation
     self.reference_point = reference_point
コード例 #5
0
 def findTransformation(self, conf1, conf2=None):
     """Returns the linear transformation that, when applied to
     the object in configuration |conf1|, minimizes the RMS distance
     to the conformation in |conf2|, and the minimal RMS distance.
     If |conf2| is 'None', returns the transformation from the
     current configuration to |conf1| and the associated RMS distance.
     The algorithm is described in [Article:Kneller1990]."""
     q, cm1, cm2, rms = self.findTransformationAsQuaternion(conf1, conf2)
     return Transformation.Translation(cm2) * \
            q.asRotation() * \
            Transformation.Translation(-cm1), \
            rms
コード例 #6
0
    def rotateAroundAxis(self, point1, point2, angle):
        """
        Rotate the object arond an axis specified by two points

        :param point1: the first point
        :type point1: Scientific.Geometry.Vector
        :param point2: the second point
        :type point2: Scientific.Geometry.Vector
        :param angle: the rotation angle (in radians)
        :type angle: float
        """
        tr1 = Transformation.Translation(-point1)
        tr2 = Transformation.Rotation(point2 - point1, angle)
        tr3 = tr1.inverse()
        self.applyTransformation(tr3 * tr2 * tr1)
コード例 #7
0
    def rotateAroundCenter(self, axis_direction, angle):
        """
        Rotate the object around an axis that passes through its center
        of mass.

        :param axis_direction: the direction of the axis of rotation
        :type axis_direction: Scientific.Geometry.Vector
        :param angle: the rotation angle (in radians)
        :type angle: float
        """
        cm = self.centerOfMass()
        t = Transformation.Translation(cm) * \
            Transformation.Rotation(axis_direction, angle) * \
            Transformation.Translation(-cm)
        self.applyTransformation(t)
コード例 #8
0
    def testVectorRotation(self):
        from Scientific.Geometry import Vector, Transformation
        # check regression
        axis_direction = Vector(0.000000, 1.000000, 1.000000)
        angle = 0.7

        Transformation.Rotation(axis_direction, angle)
コード例 #9
0
 def asRotation(self):
     """
     @returns: the corresponding rotation matrix
     @rtype: L{Scientific.Geometry.Transformation.Rotation}
     @raises ValueError: if the quaternion is not normalized
     """
     if Numeric.fabs(self.norm() - 1.) > 1.e-5:
         raise ValueError('Quaternion not normalized')
     d = Numeric.dot(Numeric.dot(self._rot, self.array), self.array)
     return Transformation.Rotation(d)
コード例 #10
0
 def findTransformation(self, conf1, conf2=None):
     """
     :param conf1: a configuration object
     :type conf1: :class:~MMTK.ParticleProperties.Configuration
     :param conf2: a configuration object, or None for the
                   current configuration
     :type conf2: :class:~MMTK.ParticleProperties.Configuration or NoneType
     :returns: the linear transformation that, when applied to
               the object in configuration conf1, minimizes the
               RMS distance to the conformation in conf2, and the
               minimal RMS distance.
               If conf2 is None, returns the transformation from the
               current configuration to conf1 and the associated
               RMS distance.
     """
     q, cm1, cm2, rms = self.findTransformationAsQuaternion(conf1, conf2)
     return Transformation.Translation(cm2) * \
            q.asRotation() * \
            Transformation.Translation(-cm1), \
            rms
コード例 #11
0
    def rotateAroundOrigin(self, axis_direction, angle):
        """
        Rotate the object around an axis that passes through the
        coordinate origin.

        :param axis_direction: the direction of the axis of rotation
        :type axis_direction: Scientific.Geometry.Vector
        :param angle: the rotation angle (in radians)
        :type angle: float
        """
        self.applyTransformation(Transformation.Rotation(axis_direction, angle))
コード例 #12
0
ファイル: Universe.py プロジェクト: fxia22/ASM_xf
    def dihedral(self, p1, p2, p3, p4, conf = None):
        """Returns the dihedral angle between the plane containing the
        distance vectors |p1|-|p2| and |p3|-|p2| and the plane containing the
        distance vectors |p2|-|p3| and |p4|-|p3|."""
	v1 = self.distanceVector(p2, p1, conf)
	v2 = self.distanceVector(p3, p2, conf)
	v3 = self.distanceVector(p3, p4, conf)
	a = v1.cross(v2).normal()
	b = v3.cross(v2).normal()
	cos = a*b
	sin = b.cross(a)*v2/v2.length()
	return Transformation.angleFromSineAndCosine(sin, cos)
コード例 #13
0
    def normalizingTransformation(self, repr=None):
        """
        Calculate a linear transformation that shifts the center of mass
        of the object to the coordinate origin and makes its
        principal axes of inertia parallel to the three coordinate
        axes.

        :param repr: the specific representation for axis alignment:
          Ir    : x y z <--> b c a
          IIr   : x y z <--> c a b
          IIIr  : x y z <--> a b c
          Il    : x y z <--> c b a
          IIl   : x y z <--> a c b
          IIIl  : x y z <--> b a c
        :returns: the normalizing transformation
        :rtype: Scientific.Geometry.Transformation.RigidBodyTransformation
        """
        from Scientific.LA import determinant
        cm, inertia = self.centerAndMomentOfInertia()
        ev, diag = inertia.diagonalization()
        if determinant(diag.array) < 0:
            diag.array[0] = -diag.array[0]
        if repr != None:
            seq = N.argsort(ev)
            if repr == 'Ir':
                seq = N.array([seq[1], seq[2], seq[0]])
            elif repr == 'IIr':
                seq = N.array([seq[2], seq[0], seq[1]])
            elif repr == 'Il':
                seq = N.seq[2::-1]
            elif repr == 'IIl':
                seq[1:3] = N.array([seq[2], seq[1]])
            elif repr == 'IIIl':
                seq[0:2] = N.array([seq[1], seq[0]])
            elif repr != 'IIIr':
                print 'unknown representation'
            diag.array = N.take(diag.array, seq)
        return Transformation.Rotation(diag) * Transformation.Translation(-cm)
コード例 #14
0
 def __init__(self, attr, point1, point2):
     center = 0.5 * (point1 + point2)
     axis = point2 - point1
     self.height = axis.length()
     if self.height > 0:
         axis = axis / self.height
         rot_axis = ey.cross(axis)
         sine = rot_axis.length()
         cosine = ey * axis
         angle = Transformation.angleFromSineAndCosine(sine, cosine)
         if abs(angle) < 1.e-4 or abs(angle - 2. * N.pi) < 1.e-4:
             rotation = None
         else:
             if abs(sine) < 1.e-4:
                 rot_axis = ex
             rotation = (rot_axis, angle)
     else:
         rotation = None
     ShapeObject.__init__(self, attr, rotation, center, center)
コード例 #15
0
    def __init__(self, attr, point1, point2):
	center = 0.5*(point1+point2)
	axis = point2-point1
	self.height = axis.length()
	if self.height > 0:
	    axis = axis/self.height
	    rot_axis = VectorModule.ey.cross(axis)
	    sine = rot_axis.length()
	    cosine = VectorModule.ey*axis
	    angle = Transformation.angleFromSineAndCosine(sine, cosine)
	    if abs(angle) < 1.e-4 or abs(angle-2.*Numeric.pi) < 1.e-4:
		rotation = None
	    else:
		if abs(sine) < 1.e-4:
		    rot_axis = VectorModule.ex
		rotation = (rot_axis, angle)
	else:
	    rotation = None
	ShapeObject.__init__(self, attr, rotation, center, center)
コード例 #16
0
 def addImproperTerm(self, data, improper, object, global_data):
     if not self.arguments[2]:
         return
     a1 = improper.a1
     a2 = improper.a2
     a3 = improper.a3
     a4 = improper.a4
     i1 = a1.index
     i2 = a2.index
     i3 = a3.index
     i4 = a4.index
     t1 = global_data.atom_type[a1]
     t2 = global_data.atom_type[a2]
     t3 = global_data.atom_type[a3]
     t4 = global_data.atom_type[a4]
     terms = self.dataset.improperParameters(t1, t2, t3, t4)
     if terms is not None:
         atoms = [(t2,i2,a2), (t3,i3,a3), (t4,i4,a4)]
         atoms.sort(_order)
         i2, i3, i4 = tuple(map(lambda t: t[1], atoms))
         a2, a3, a4 = tuple(map(lambda t: t[2], atoms))
         v1 = a2.position()-a3.position()
         v2 = a3.position()-a1.position()
         v3 = a4.position()-a1.position()
         a = v1.cross(v2).normal()
         b = v3.cross(v2).normal()
         cos = a*b
         sin = b.cross(a)*v2/v2.length()
         dihedral = Transformation.angleFromSineAndCosine(sin, cos)
         if dihedral > Numeric.pi:
             dihedral = dihedral - 2.*Numeric.pi
         for p in terms:
             if p[2] != 0.:
                 mult = p[0]
                 phase = Numeric.fmod(Numeric.pi-mult*dihedral,
                                      2.*Numeric.pi)
                 if phase < 0.:
                     phase = phase + 2.*Numeric.pi
                 data.add('dihedrals', (i2, i3, i1, i4,
                                        p[0], phase) + p[2:])
コード例 #17
0
ファイル: BondFF.py プロジェクト: fxia22/ASM_xf
    def addImproperTerm(self, data, improper, object, global_data):
        if not self.arguments[2]:
            return
	a1 = improper.a1
	a2 = improper.a2
	a3 = improper.a3
	a4 = improper.a4
	i1 = a1.index
	i2 = a2.index
	i3 = a3.index
	i4 = a4.index
	t1 = global_data.atom_type[a1]
	t2 = global_data.atom_type[a2]
	t3 = global_data.atom_type[a3]
	t4 = global_data.atom_type[a4]
	terms = self.dataset.improperParameters(t1, t2, t3, t4)
	if terms is not None:
	    atoms = [(t2,i2,a2), (t3,i3,a3), (t4,i4,a4)]
	    atoms.sort(_order)
	    i2, i3, i4 = tuple(map(lambda t: t[1], atoms))
	    a2, a3, a4 = tuple(map(lambda t: t[2], atoms))
            v1 = a2.position()-a3.position()
            v2 = a3.position()-a1.position()
            v3 = a4.position()-a1.position()
            a = v1.cross(v2).normal()
            b = v3.cross(v2).normal()
            cos = a*b
            sin = b.cross(a)*v2/v2.length()
            dihedral = Transformation.angleFromSineAndCosine(sin, cos)
            if dihedral > Numeric.pi:
                dihedral = dihedral - 2.*Numeric.pi
	    for p in terms:
		if p[2] != 0.:
                    mult = p[0]
                    phase = Numeric.fmod(Numeric.pi-mult*dihedral,
                                         2.*Numeric.pi)
                    if phase < 0.:
                        phase = phase + 2.*Numeric.pi
		    data.add('dihedrals', (i2, i3, i1, i4,
                                           p[0], phase) + p[2:])
コード例 #18
0
 def addDihedralTerm(self, data, dihedral, object, global_data):
     if not self.arguments[2]:
         return
     a1 = dihedral.a1
     a2 = dihedral.a2
     a3 = dihedral.a3
     a4 = dihedral.a4
     i1 = a1.index
     i2 = a2.index
     i3 = a3.index
     i4 = a4.index
     global_data.add('1_4_pairs', (i1, i4))
     t1 = global_data.atom_type[a1]
     t2 = global_data.atom_type[a2]
     t3 = global_data.atom_type[a3]
     t4 = global_data.atom_type[a4]
     terms = self.dataset.dihedralParameters(t1, t2, t3, t4)
     if terms is not None:
         v1 = a1.position()-a2.position()
         v2 = a2.position()-a3.position()
         v3 = a4.position()-a3.position()
         a = v1.cross(v2).normal()
         b = v3.cross(v2).normal()
         cos = a*b
         sin = b.cross(a)*v2/v2.length()
         dihedral = Transformation.angleFromSineAndCosine(sin, cos)
         if dihedral > Numeric.pi:
             dihedral = dihedral - 2.*Numeric.pi
         for p in terms:
             if p[2] != 0.:
                 mult = p[0]
                 phase = Numeric.fmod(Numeric.pi-mult*dihedral,
                                      2.*Numeric.pi)
                 if phase < 0.:
                     phase = phase + 2.*Numeric.pi
                 data.add('dihedrals', (i1, i2, i3, i4,
                                        p[0], phase) + p[2:])
コード例 #19
0
ファイル: BondFF.py プロジェクト: fxia22/ASM_xf
    def addDihedralTerm(self, data, dihedral, object, global_data):
        if not self.arguments[2]:
            return
	a1 = dihedral.a1
	a2 = dihedral.a2
	a3 = dihedral.a3
	a4 = dihedral.a4
	i1 = a1.index
	i2 = a2.index
	i3 = a3.index
	i4 = a4.index
	global_data.add('1_4_pairs', (i1, i4))
	t1 = global_data.atom_type[a1]
	t2 = global_data.atom_type[a2]
	t3 = global_data.atom_type[a3]
	t4 = global_data.atom_type[a4]
	terms = self.dataset.dihedralParameters(t1, t2, t3, t4)
	if terms is not None:
            v1 = a1.position()-a2.position()
            v2 = a2.position()-a3.position()
            v3 = a4.position()-a3.position()
            a = v1.cross(v2).normal()
            b = v3.cross(v2).normal()
            cos = a*b
            sin = b.cross(a)*v2/v2.length()
            dihedral = Transformation.angleFromSineAndCosine(sin, cos)
            if dihedral > Numeric.pi:
                dihedral = dihedral - 2.*Numeric.pi
	    for p in terms:
		if p[2] != 0.:
                    mult = p[0]
                    phase = Numeric.fmod(Numeric.pi-mult*dihedral,
                                         2.*Numeric.pi)
                    if phase < 0.:
                        phase = phase + 2.*Numeric.pi
		    data.add('dihedrals', (i1, i2, i3, i4,
                                           p[0], phase) + p[2:])
コード例 #20
0
 def rotateAroundOrigin(self, axis, angle):
     """Rotates the object by the given |angle| around an axis
     that passes through the coordinate origin and has the given
     |direction|."""
     self.applyTransformation(Transformation.Rotation(axis, angle))