def __init__(self, atoms, constraints): self.atoms = atoms natoms = len(self.atoms) nconst = sum([len(c) for c in constraints]) b = N.zeros((nconst, natoms), N.Float) c = N.zeros((nconst,), N.Float) i = 0 for cons in constraints: cons.setCoefficients(self.atoms, b, c, i) i = i + len(cons) u, s, vt = LA.singular_value_decomposition(b) self.rank = 0 for i in range(min(natoms, nconst)): if s[i] > 0.: self.rank = self.rank + 1 self.b = b self.bi = LA.generalized_inverse(b) self.p = N.identity(natoms)-N.dot(self.bi, self.b) self.c = c self.bi_c = N.dot(self.bi, c) c_test = N.dot(self.b, self.bi_c) if N.add.reduce((c_test-c)**2)/nconst > 1.e-12: Utility.warning("The charge constraints are inconsistent." " They will be applied as a least-squares" " condition.")
def __init__(self, atoms, constraints): self.atoms = atoms natoms = len(self.atoms) nconst = sum([len(c) for c in constraints]) b = N.zeros((nconst, natoms), N.Float) c = N.zeros((nconst, ), N.Float) i = 0 for cons in constraints: cons.setCoefficients(self.atoms, b, c, i) i = i + len(cons) u, s, vt = LA.singular_value_decomposition(b) self.rank = 0 for i in range(min(natoms, nconst)): if s[i] > 0.: self.rank = self.rank + 1 self.b = b self.bi = LA.generalized_inverse(b) self.p = N.identity(natoms) - N.dot(self.bi, self.b) self.c = c self.bi_c = N.dot(self.bi, c) c_test = N.dot(self.b, self.bi_c) if N.add.reduce((c_test - c)**2) / nconst > 1.e-12: Utility.warning("The charge constraints are inconsistent." " They will be applied as a least-squares" " condition.")
def symmetricTensorBasis(cell, space_group): from CDTK.Crystal import UnitCell subspace = 1. * N.equal.outer(N.arange(6), N.arange(6)) for tr in cartesianCoordinateSymmetryTransformations(cell, space_group): rot = symmetricTensorRotationMatrix(tr.tensor.array) ev, axes = LA.eigenvectors(rot) new_subspace = [] for i in range(6): if abs(ev[i] - 1.) < 1.e-12: p = N.dot(N.transpose(subspace), N.dot(subspace, axes[i].real)) new_subspace.append(p) m, s, subspace = LA.singular_value_decomposition(N.array(new_subspace)) nb = N.sum(s / s[0] > 1.e-12) subspace = subspace[:nb] return [SymmetricTensor(a) for a in subspace]
def superpositionFit(confs): """ :param confs: the weight, reference position, and alternate position for each atom :type confs: sequence of (float, Vector, Vector) :returns: the quaternion representing the rotation, the center of mass in the reference configuration, the center of mass in the alternate configuraton, and the RMS distance after the optimal superposition """ w_sum = 0. wr_sum = N.zeros((3,), N.Float) for w, r_ref, r in confs: w_sum += w wr_sum += w*r_ref.array ref_cms = wr_sum/w_sum pos = N.zeros((3,), N.Float) possq = 0. cross = N.zeros((3, 3), N.Float) for w, r_ref, r in confs: w = w/w_sum r_ref = r_ref.array-ref_cms r = r.array pos = pos + w*r possq = possq + w*N.add.reduce(r*r) \ + w*N.add.reduce(r_ref*r_ref) cross = cross + w*r[:, N.NewAxis]*r_ref[N.NewAxis, :] k = N.zeros((4, 4), N.Float) k[0, 0] = -cross[0, 0]-cross[1, 1]-cross[2, 2] k[0, 1] = cross[1, 2]-cross[2, 1] k[0, 2] = cross[2, 0]-cross[0, 2] k[0, 3] = cross[0, 1]-cross[1, 0] k[1, 1] = -cross[0, 0]+cross[1, 1]+cross[2, 2] k[1, 2] = -cross[0, 1]-cross[1, 0] k[1, 3] = -cross[0, 2]-cross[2, 0] k[2, 2] = cross[0, 0]-cross[1, 1]+cross[2, 2] k[2, 3] = -cross[1, 2]-cross[2, 1] k[3, 3] = cross[0, 0]+cross[1, 1]-cross[2, 2] for i in range(1, 4): for j in range(i): k[i, j] = k[j, i] k = 2.*k for i in range(4): k[i, i] = k[i, i] + possq - N.add.reduce(pos*pos) from Scientific import LA e, v = LA.eigenvectors(k) i = N.argmin(e) v = v[i] if v[0] < 0: v = -v if e[i] <= 0.: rms = 0. else: rms = N.sqrt(e[i]) from Scientific.Geometry import Quaternion return Quaternion.Quaternion(v), Vector(ref_cms), \ Vector(pos), rms
def superpositionFit(confs): """ :param confs: the weight, reference position, and alternate position for each atom :type confs: sequence of (float, Vector, Vector) :returns: the quaternion representing the rotation, the center of mass in the reference configuration, the center of mass in the alternate configuraton, and the RMS distance after the optimal superposition """ w_sum = 0. wr_sum = N.zeros((3, ), N.Float) for w, r_ref, r in confs: w_sum += w wr_sum += w * r_ref.array ref_cms = wr_sum / w_sum pos = N.zeros((3, ), N.Float) possq = 0. cross = N.zeros((3, 3), N.Float) for w, r_ref, r in confs: w = w / w_sum r_ref = r_ref.array - ref_cms r = r.array pos = pos + w * r possq = possq + w*N.add.reduce(r*r) \ + w*N.add.reduce(r_ref*r_ref) cross = cross + w * r[:, N.NewAxis] * r_ref[N.NewAxis, :] k = N.zeros((4, 4), N.Float) k[0, 0] = -cross[0, 0] - cross[1, 1] - cross[2, 2] k[0, 1] = cross[1, 2] - cross[2, 1] k[0, 2] = cross[2, 0] - cross[0, 2] k[0, 3] = cross[0, 1] - cross[1, 0] k[1, 1] = -cross[0, 0] + cross[1, 1] + cross[2, 2] k[1, 2] = -cross[0, 1] - cross[1, 0] k[1, 3] = -cross[0, 2] - cross[2, 0] k[2, 2] = cross[0, 0] - cross[1, 1] + cross[2, 2] k[2, 3] = -cross[1, 2] - cross[2, 1] k[3, 3] = cross[0, 0] + cross[1, 1] - cross[2, 2] for i in range(1, 4): for j in range(i): k[i, j] = k[j, i] k = 2. * k for i in range(4): k[i, i] = k[i, i] + possq - N.add.reduce(pos * pos) from Scientific import LA e, v = LA.eigenvectors(k) i = N.argmin(e) v = v[i] if v[0] < 0: v = -v if e[i] <= 0.: rms = 0. else: rms = N.sqrt(e[i]) from Scientific.Geometry import Quaternion return Quaternion.Quaternion(v), Vector(ref_cms), \ Vector(pos), rms
def findTransformationAsQuaternion(self, conf1, conf2=None): universe = self.universe() if conf1.universe != universe: raise ValueError("conformation is for a different universe") if conf2 is None: conf1, conf2 = conf2, conf1 else: if conf2.universe != universe: raise ValueError("conformation is for a different universe") ref = conf1 conf = conf2 weights = universe.masses() weights = weights / self.mass() ref_cms = self.centerOfMass(ref).array pos = Numeric.zeros((3, ), Numeric.Float) possq = 0. cross = Numeric.zeros((3, 3), Numeric.Float) for a in self.atomList(): r = a.position(conf).array r_ref = a.position(ref).array - ref_cms w = weights[a] pos = pos + w * r possq = possq + w*Numeric.add.reduce(r*r) \ + w*Numeric.add.reduce(r_ref*r_ref) cross = cross + w * r[:, Numeric.NewAxis] * r_ref[Numeric.NewAxis, :] k = Numeric.zeros((4, 4), Numeric.Float) k[0, 0] = -cross[0, 0] - cross[1, 1] - cross[2, 2] k[0, 1] = cross[1, 2] - cross[2, 1] k[0, 2] = cross[2, 0] - cross[0, 2] k[0, 3] = cross[0, 1] - cross[1, 0] k[1, 1] = -cross[0, 0] + cross[1, 1] + cross[2, 2] k[1, 2] = -cross[0, 1] - cross[1, 0] k[1, 3] = -cross[0, 2] - cross[2, 0] k[2, 2] = cross[0, 0] - cross[1, 1] + cross[2, 2] k[2, 3] = -cross[1, 2] - cross[2, 1] k[3, 3] = cross[0, 0] + cross[1, 1] - cross[2, 2] for i in range(1, 4): for j in range(i): k[i, j] = k[j, i] k = 2. * k for i in range(4): k[i, i] = k[i, i] + possq - Numeric.add.reduce(pos * pos) from Scientific import LA e, v = LA.eigenvectors(k) i = Numeric.argmin(e) v = v[i] if v[0] < 0: v = -v if e[i] <= 0.: rms = 0. else: rms = Numeric.sqrt(e[i]) return Quaternion.Quaternion(v), Vector(ref_cms), \ Vector(pos), rms
def rigidMovement(atoms, vector): a = N.zeros((len(atoms), 3, 2, 3), N.Float) b = N.zeros((len(atoms), 3), N.Float) for i in range(len(atoms)): a[i, :, 0, :] = delta.array a[i, :, 1, :] = (epsilon * atoms[i].position()).array b[i] = vector[atoms[i]].array a.shape = (3 * len(atoms), 6) b.shape = (3 * len(atoms), ) vo = N.dot(LA.generalized_inverse(a), b) return Vector(vo[:3]), Vector(vo[3:])
def findTransformationAsQuaternion(self, conf1, conf2 = None): universe = self.universe() if conf1.universe != universe: raise ValueError("conformation is for a different universe") if conf2 is None: conf1, conf2 = conf2, conf1 else: if conf2.universe != universe: raise ValueError("conformation is for a different universe") ref = conf1 conf = conf2 weights = universe.masses() weights = weights/self.mass() ref_cms = self.centerOfMass(ref).array pos = Numeric.zeros((3,), Numeric.Float) possq = 0. cross = Numeric.zeros((3, 3), Numeric.Float) for a in self.atomList(): r = a.position(conf).array r_ref = a.position(ref).array-ref_cms w = weights[a] pos = pos + w*r possq = possq + w*Numeric.add.reduce(r*r) \ + w*Numeric.add.reduce(r_ref*r_ref) cross = cross + w*r[:, Numeric.NewAxis]*r_ref[Numeric.NewAxis, :] k = Numeric.zeros((4, 4), Numeric.Float) k[0, 0] = -cross[0, 0]-cross[1, 1]-cross[2, 2] k[0, 1] = cross[1, 2]-cross[2, 1] k[0, 2] = cross[2, 0]-cross[0, 2] k[0, 3] = cross[0, 1]-cross[1, 0] k[1, 1] = -cross[0, 0]+cross[1, 1]+cross[2, 2] k[1, 2] = -cross[0, 1]-cross[1, 0] k[1, 3] = -cross[0, 2]-cross[2, 0] k[2, 2] = cross[0, 0]-cross[1, 1]+cross[2, 2] k[2, 3] = -cross[1, 2]-cross[2, 1] k[3, 3] = cross[0, 0]+cross[1, 1]-cross[2, 2] for i in range(1, 4): for j in range(i): k[i, j] = k[j, i] k = 2.*k for i in range(4): k[i, i] = k[i, i] + possq - Numeric.add.reduce(pos*pos) from Scientific import LA e, v = LA.eigenvectors(k) i = Numeric.argmin(e) v = v[i] if v[0] < 0: v = -v if e[i] <= 0.: rms = 0. else: rms = Numeric.sqrt(e[i]) return Quaternion.Quaternion(v), Vector(ref_cms), \ Vector(pos), rms
def __init__(self, *parameters): """ :param parameters: one of 1) three lattice vectors or 2) six numbers: the lengths of the three lattice vectors (a, b, c) followed by the three angles (alpha, beta, gamma). """ if len(parameters) == 6: self.a, self.b, self.c, self.alpha, self.beta, self.gamma = \ parameters e1 = Vector(self.a, 0, 0) e2 = self.b * Vector(N.cos(self.gamma), N.sin(self.gamma), 0.) e3_x = N.cos(self.beta) e3_y = (N.cos(self.alpha)-N.cos(self.beta)*N.cos(self.gamma)) \ / N.sin(self.gamma) e3_z = N.sqrt(1. - e3_x**2 - e3_y**2) e3 = self.c * Vector(e3_x, e3_y, e3_z) self.basis = (e1, e2, e3) elif len(parameters) == 3: assert isVector(parameters[0]) assert isVector(parameters[1]) assert isVector(parameters[2]) self.basis = list(parameters) e1, e2, e3 = self.basis self.a = e1.length() self.b = e2.length() self.c = e3.length() self.alpha = N.arccos(e2 * e3 / (self.b * self.c)) self.beta = N.arccos(e1 * e3 / (self.a * self.c)) self.gamma = N.arccos(e1 * e2 / (self.a * self.b)) else: raise ValueError("Parameter list incorrect") r = LA.inverse(N.transpose([e1, e2, e3])) self.reciprocal_basis = [Vector(r[0]), Vector(r[1]), Vector(r[2])]
def __init__(self, system, points, constraints = None): """ :param system: any chemical object (usually a molecule) :param points: a list of point/potential pairs (a vector for the evaluation point, a number for the potential), or a dictionary whose keys are Configuration objects and whose values are lists of point/potential pairs. The latter case permits combined fits for several conformations of the system. :param constraints: an optional list of constraint objects (:class:`~MMTK.ChargeFit.TotalChargeConstraint` and/or :class:`~MMTK.ChargeFit.EqualityConstraint` objects). If the constraints are inconsistent, a warning is printed and the result will satisfy the constraints only in a least-squares sense. """ self.atoms = system.atomList() if type(points) != type({}): points = {None: points} if constraints is not None: constraints = ChargeConstraintSet(self.atoms, constraints) npoints = sum([len(v) for v in points.values()]) natoms = len(self.atoms) if npoints < natoms: raise ValueError("Not enough data points for fit") m = N.zeros((npoints, natoms), N.Float) phi = N.zeros((npoints,), N.Float) i = 0 for conf, pointlist in points.items(): for r, p in pointlist: for j in range(natoms): m[i, j] = 1./(r-self.atoms[j].position(conf)).length() phi[i] = p i = i + 1 m = m*Units.electrostatic_energy m_test = m phi_test = phi if constraints is not None: phi -= N.dot(m, constraints.bi_c) m = N.dot(m, constraints.p) c_rank = constraints.rank else: c_rank = 0 u, s, vt = LA.singular_value_decomposition(m) s_test = s[:len(s)-c_rank] cutoff = 1.e-10*N.maximum.reduce(s_test) nonzero = N.repeat(s_test, N.not_equal(s_test, 0.)) self.rank = len(nonzero) self.condition = N.maximum.reduce(nonzero) / \ N.minimum.reduce(nonzero) self.effective_rank = N.add.reduce(N.greater(s, cutoff)) if self.effective_rank < self.rank: self.effective_condition = N.maximum.reduce(nonzero) / cutoff else: self.effective_condition = self.condition if self.effective_rank < natoms-c_rank: Utility.warning('Not all charges are uniquely determined' + ' by the available data') for i in range(natoms): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0. q = N.dot(N.transpose(vt), s*N.dot(N.transpose(u)[:natoms, :], phi)) if constraints is not None: q = constraints.bi_c + N.dot(constraints.p, q) deviation = N.dot(m_test, q)-phi_test self.rms_error = N.sqrt(N.dot(deviation, deviation)) deviation = N.fabs(deviation/phi_test) self.relative_rms_error = N.sqrt(N.dot(deviation, deviation)) self.charges = {} for i in range(natoms): self.charges[self.atoms[i]] = q[i]
def __init__(self, system, points, constraints=None): """ :param system: any chemical object (usually a molecule) :param points: a list of point/potential pairs (a vector for the evaluation point, a number for the potential), or a dictionary whose keys are Configuration objects and whose values are lists of point/potential pairs. The latter case permits combined fits for several conformations of the system. :param constraints: an optional list of constraint objects (:class:`~MMTK.ChargeFit.TotalChargeConstraint` and/or :class:`~MMTK.ChargeFit.EqualityConstraint` objects). If the constraints are inconsistent, a warning is printed and the result will satisfy the constraints only in a least-squares sense. """ self.atoms = system.atomList() if type(points) != type({}): points = {None: points} if constraints is not None: constraints = ChargeConstraintSet(self.atoms, constraints) npoints = sum([len(v) for v in points.values()]) natoms = len(self.atoms) if npoints < natoms: raise ValueError("Not enough data points for fit") m = N.zeros((npoints, natoms), N.Float) phi = N.zeros((npoints, ), N.Float) i = 0 for conf, pointlist in points.items(): for r, p in pointlist: for j in range(natoms): m[i, j] = 1. / (r - self.atoms[j].position(conf)).length() phi[i] = p i = i + 1 m = m * Units.electrostatic_energy m_test = m phi_test = phi if constraints is not None: phi -= N.dot(m, constraints.bi_c) m = N.dot(m, constraints.p) c_rank = constraints.rank else: c_rank = 0 u, s, vt = LA.singular_value_decomposition(m) s_test = s[:len(s) - c_rank] cutoff = 1.e-10 * N.maximum.reduce(s_test) nonzero = N.repeat(s_test, N.not_equal(s_test, 0.)) self.rank = len(nonzero) self.condition = N.maximum.reduce(nonzero) / \ N.minimum.reduce(nonzero) self.effective_rank = N.add.reduce(N.greater(s, cutoff)) if self.effective_rank < self.rank: self.effective_condition = N.maximum.reduce(nonzero) / cutoff else: self.effective_condition = self.condition if self.effective_rank < natoms - c_rank: Utility.warning('Not all charges are uniquely determined' + ' by the available data') for i in range(natoms): if s[i] > cutoff: s[i] = 1. / s[i] else: s[i] = 0. q = N.dot(N.transpose(vt), s * N.dot(N.transpose(u)[:natoms, :], phi)) if constraints is not None: q = constraints.bi_c + N.dot(constraints.p, q) deviation = N.dot(m_test, q) - phi_test self.rms_error = N.sqrt(N.dot(deviation, deviation)) deviation = N.fabs(deviation / phi_test) self.relative_rms_error = N.sqrt(N.dot(deviation, deviation)) self.charges = {} for i in range(natoms): self.charges[self.atoms[i]] = q[i]
def leastSquaresFit(model, parameters, data, max_iterations=None, stopping_limit=0.005, validator=None): """General non-linear least-squares fit using the X{Levenberg-Marquardt} algorithm and X{automatic differentiation}. @param model: the function to be fitted. It will be called with two parameters: the first is a tuple containing all fit parameters, and the second is the first element of a data point (see below). The return value must be a number. Since automatic differentiation is used to obtain the derivatives with respect to the parameters, the function may only use the mathematical functions known to the module FirstDerivatives. @type model: callable @param parameters: a tuple of initial values for the fit parameters @type parameters: C{tuple} of numbers @param data: a list of data points to which the model is to be fitted. Each data point is a tuple of length two or three. Its first element specifies the independent variables of the model. It is passed to the model function as its first parameter, but not used in any other way. The second element of each data point tuple is the number that the return value of the model function is supposed to match as well as possible. The third element (which defaults to 1.) is the statistical variance of the data point, i.e. the inverse of its statistical weight in the fitting procedure. @type data: C{list} @returns: a list containing the optimal parameter values and the chi-squared value describing the quality of the fit @rtype: C{(list, float)} """ n_param = len(parameters) p = () i = 0 for param in parameters: p = p + (DerivVar(param, i), ) i = i + 1 id = N.identity(n_param) l = 0.001 chi_sq, alpha = _chiSquare(model, p, data) niter = 0 while 1: delta = LA.solve_linear_equations(alpha + l * N.diagonal(alpha) * id, -0.5 * N.array(chi_sq[1])) next_p = map(lambda a, b: a + b, p, delta) if validator is not None: while not validator(*next_p): delta *= 0.8 next_p = map(lambda a, b: a + b, p, delta) next_chi_sq, next_alpha = _chiSquare(model, next_p, data) if next_chi_sq > chi_sq: l = 10. * l else: l = 0.1 * l if chi_sq[0] - next_chi_sq[0] < stopping_limit: break p = next_p chi_sq = next_chi_sq alpha = next_alpha niter = niter + 1 if max_iterations is not None and niter == max_iterations: raise IterationCountExceededError return [p[0] for p in next_p], next_chi_sq[0]
from MMTK import * from MMTK.Proteins import Protein from Scientific import N, LA # Import the graphics module. Substitute any other graphics # module name to make the example use that module. from Scientific.Visualization import VRML2 module = VRML2 # Create the protein and find its center of mass and tensor of inertia. protein = Protein('insulin') center, inertia = protein.centerAndMomentOfInertia() # Diagonalize the inertia tensor and scale the axes to a suitable length. mass = protein.mass() diagonal, directions = LA.eigenvectors(inertia.array) diagonal = N.sqrt(diagonal / mass) # Generate the backbone graphics objects. graphics = protein.graphicsObjects(graphics_module=module, model='backbone', color='red') # Add an atomic wireframe representation of all valine sidechains valines = protein.residuesOfType('val') sidechains = valines.map(lambda r: r.sidechain) graphics = graphics + sidechains.graphicsObjects( graphics_module=module, model='wireframe', color='blue') # Add three arrows corresponding to the principal axes of inertia. for length, axis in map(None, diagonal, directions):
def leastSquaresFit(model, parameters, data, max_iterations=None, stopping_limit = 0.005): """General non-linear least-squares fit using the X{Levenberg-Marquardt} algorithm and X{automatic differentiation}. @param model: the function to be fitted. It will be called with two parameters: the first is a tuple containing all fit parameters, and the second is the first element of a data point (see below). The return value must be a number. Since automatic differentiation is used to obtain the derivatives with respect to the parameters, the function may only use the mathematical functions known to the module FirstDerivatives. @type param: callable @param parameters: a tuple of initial values for the fit parameters @type parameters: C{tuple} of numbers @param data: a list of data points to which the model is to be fitted. Each data point is a tuple of length two or three. Its first element specifies the independent variables of the model. It is passed to the model function as its first parameter, but not used in any other way. The second element of each data point tuple is the number that the return value of the model function is supposed to match as well as possible. The third element (which defaults to 1.) is the statistical variance of the data point, i.e. the inverse of its statistical weight in the fitting procedure. @type data: C{list} @returns: a list containing the optimal parameter values and the chi-squared value describing the quality of the fit @rtype: C{(list, float)} """ n_param = len(parameters) p = () i = 0 for param in parameters: p = p + (DerivVar(param, i),) i = i + 1 id = N.identity(n_param) l = 0.001 chi_sq, alpha = _chiSquare(model, p, data) niter = 0 while 1: delta = LA.solve_linear_equations(alpha+l*N.diagonal(alpha)*id, -0.5*N.array(chi_sq[1])) next_p = map(lambda a,b: a+b, p, delta) next_chi_sq, next_alpha = _chiSquare(model, next_p, data) if next_chi_sq > chi_sq: l = 10.*l else: l = 0.1*l if chi_sq[0] - next_chi_sq[0] < stopping_limit: break p = next_p chi_sq = next_chi_sq alpha = next_alpha niter = niter + 1 if max_iterations is not None and niter == max_iterations: raise IterationCountExceededError return [p[0] for p in next_p], next_chi_sq[0]
def __init__(self, object, points, constraints = None): self.atoms = object.atomList() if type(points) != type({}): points = {None: points} if constraints is not None: constraints = ChargeConstraintSet(self.atoms, constraints) npoints = reduce(operator.add, map(len, points.values())) natoms = len(self.atoms) if npoints < natoms: raise ValueError("Not enough data points for fit") m = Numeric.zeros((npoints, natoms), Numeric.Float) phi = Numeric.zeros((npoints,), Numeric.Float) i = 0 for conf, pointlist in points.items(): for r, p in pointlist: for j in range(natoms): m[i, j] = 1./(r-self.atoms[j].position(conf)).length() phi[i] = p i = i + 1 m = m*Units.electrostatic_energy m_test = m phi_test = phi if constraints is not None: phi = phi-Numeric.dot(m, constraints.bi_c) m = Numeric.dot(m, constraints.p) c_rank = constraints.rank else: c_rank = 0 u, s, vt = LinearAlgebra.singular_value_decomposition(m) s_test = s[:len(s)-c_rank] cutoff = 1.e-10*Numeric.maximum.reduce(s_test) nonzero = Numeric.repeat(s_test, Numeric.not_equal(s_test, 0.)) self.rank = len(nonzero) self.condition = Numeric.maximum.reduce(nonzero) / \ Numeric.minimum.reduce(nonzero) self.effective_rank = Numeric.add.reduce(Numeric.greater(s, cutoff)) if self.effective_rank < self.rank: self.effective_condition = Numeric.maximum.reduce(nonzero) / cutoff else: self.effective_condition = self.condition if self.effective_rank < natoms-c_rank: Utility.warning('Not all charges are uniquely determined' + ' by the available data') for i in range(natoms): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0. q = Numeric.dot(Numeric.transpose(vt), s*Numeric.dot(Numeric.transpose(u)[:natoms, :], phi)) if constraints is not None: q = constraints.bi_c + Numeric.dot(constraints.p, q) deviation = Numeric.dot(m_test, q)-phi_test self.rms_error = Numeric.sqrt(Numeric.dot(deviation, deviation)) deviation = Numeric.fabs(deviation/phi_test) self.relative_rms_error = Numeric.sqrt(Numeric.dot(deviation, deviation)) self.charges = {} for i in range(natoms): self.charges[self.atoms[i]] = q[i]
def __init__(self, object, points, constraints=None): self.atoms = object.atomList() if type(points) != type({}): points = {None: points} if constraints is not None: constraints = ChargeConstraintSet(self.atoms, constraints) npoints = reduce(operator.add, map(len, points.values())) natoms = len(self.atoms) if npoints < natoms: raise ValueError("Not enough data points for fit") m = Numeric.zeros((npoints, natoms), Numeric.Float) phi = Numeric.zeros((npoints, ), Numeric.Float) i = 0 for conf, pointlist in points.items(): for r, p in pointlist: for j in range(natoms): m[i, j] = 1. / (r - self.atoms[j].position(conf)).length() phi[i] = p i = i + 1 m = m * Units.electrostatic_energy m_test = m phi_test = phi if constraints is not None: phi = phi - Numeric.dot(m, constraints.bi_c) m = Numeric.dot(m, constraints.p) c_rank = constraints.rank else: c_rank = 0 u, s, vt = LinearAlgebra.singular_value_decomposition(m) s_test = s[:len(s) - c_rank] cutoff = 1.e-10 * Numeric.maximum.reduce(s_test) nonzero = Numeric.repeat(s_test, Numeric.not_equal(s_test, 0.)) self.rank = len(nonzero) self.condition = Numeric.maximum.reduce(nonzero) / \ Numeric.minimum.reduce(nonzero) self.effective_rank = Numeric.add.reduce(Numeric.greater(s, cutoff)) if self.effective_rank < self.rank: self.effective_condition = Numeric.maximum.reduce(nonzero) / cutoff else: self.effective_condition = self.condition if self.effective_rank < natoms - c_rank: Utility.warning('Not all charges are uniquely determined' + ' by the available data') for i in range(natoms): if s[i] > cutoff: s[i] = 1. / s[i] else: s[i] = 0. q = Numeric.dot(Numeric.transpose(vt), s * Numeric.dot(Numeric.transpose(u)[:natoms, :], phi)) if constraints is not None: q = constraints.bi_c + Numeric.dot(constraints.p, q) deviation = Numeric.dot(m_test, q) - phi_test self.rms_error = Numeric.sqrt(Numeric.dot(deviation, deviation)) deviation = Numeric.fabs(deviation / phi_test) self.relative_rms_error = Numeric.sqrt( Numeric.dot(deviation, deviation)) self.charges = {} for i in range(natoms): self.charges[self.atoms[i]] = q[i]