コード例 #1
0
 def __init__(self, atoms, constraints):
     self.atoms = atoms
     natoms = len(self.atoms)
     nconst = sum([len(c) for c in constraints])
     b = N.zeros((nconst, natoms), N.Float)
     c = N.zeros((nconst, ), N.Float)
     i = 0
     for cons in constraints:
         cons.setCoefficients(self.atoms, b, c, i)
         i = i + len(cons)
     u, s, vt = LA.singular_value_decomposition(b)
     self.rank = 0
     for i in range(min(natoms, nconst)):
         if s[i] > 0.:
             self.rank = self.rank + 1
     self.b = b
     self.bi = LA.generalized_inverse(b)
     self.p = N.identity(natoms) - N.dot(self.bi, self.b)
     self.c = c
     self.bi_c = N.dot(self.bi, c)
     c_test = N.dot(self.b, self.bi_c)
     if N.add.reduce((c_test - c)**2) / nconst > 1.e-12:
         Utility.warning("The charge constraints are inconsistent."
                         " They will be applied as a least-squares"
                         " condition.")
コード例 #2
0
ファイル: ChargeFit.py プロジェクト: acousticpants/mmtk
 def __init__(self, atoms, constraints):
     self.atoms = atoms
     natoms = len(self.atoms)
     nconst = sum([len(c) for c in constraints])
     b = N.zeros((nconst, natoms), N.Float)
     c = N.zeros((nconst,), N.Float)
     i = 0
     for cons in constraints:
         cons.setCoefficients(self.atoms, b, c, i)
         i = i + len(cons)
     u, s, vt = LA.singular_value_decomposition(b)
     self.rank = 0
     for i in range(min(natoms, nconst)):
         if s[i] > 0.:
             self.rank = self.rank + 1
     self.b = b
     self.bi = LA.generalized_inverse(b)
     self.p = N.identity(natoms)-N.dot(self.bi, self.b)
     self.c = c
     self.bi_c = N.dot(self.bi, c)
     c_test = N.dot(self.b, self.bi_c)
     if N.add.reduce((c_test-c)**2)/nconst > 1.e-12:
         Utility.warning("The charge constraints are inconsistent."
                         " They will be applied as a least-squares"
                         " condition.")
コード例 #3
0
def rigidMovement(atoms, vector):
    a = N.zeros((len(atoms), 3, 2, 3), N.Float)
    b = N.zeros((len(atoms), 3), N.Float)
    for i in range(len(atoms)):
        a[i, :, 0, :] = delta.array
        a[i, :, 1, :] = (epsilon * atoms[i].position()).array
        b[i] = vector[atoms[i]].array
    a.shape = (3 * len(atoms), 6)
    b.shape = (3 * len(atoms), )
    vo = N.dot(LA.generalized_inverse(a), b)
    return Vector(vo[:3]), Vector(vo[3:])