def define_distribution(worker_hosts=True, task_index=True): """Register distributed execution flags. Args: worker_hosts: Create a flag for specifying comma-separated list of workers. task_index: Create a flag for specifying index of task. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if worker_hosts: flags.DEFINE_string( name='worker_hosts', default=None, help=help_wrap( 'Comma-separated list of worker ip:port pairs for running ' 'multi-worker models with DistributionStrategy. The user would ' 'start the program on each host with identical value for this ' 'flag.')) if task_index: flags.DEFINE_integer( name='task_index', default=-1, help=help_wrap('If multi-worker training, the task_index of this ' 'worker.')) return key_flags
def define_image(data_format=True): """Register image specific flags. Args: data_format: Create a flag to specify image axis convention. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if data_format: flags.DEFINE_enum( name="data_format", short_name="df", default=None, enum_values=["channels_first", "channels_last"], help=help_wrap( "A flag to override the data format used in the model. " "channels_first provides a performance boost on GPU but is not " "always compatible with CPU. If left unspecified, the data format " "will be chosen automatically based on whether TensorFlow was " "built for CPU or GPU.")) key_flags.append("data_format") return key_flags
def define_device(tpu=True): """Register device specific flags. Args: tpu: Create flags to specify TPU operation. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if tpu: flags.DEFINE_string( name="tpu", default=None, help=help_wrap( "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a " "grpc://ip.address.of.tpu:8470 url. Passing `local` will use the" "CPU of the local instance instead. (Good for debugging.)")) key_flags.append("tpu") flags.DEFINE_string( name="tpu_zone", default=None, help=help_wrap( "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE " "project from metadata.")) flags.DEFINE_string( name="tpu_gcp_project", default=None, help=help_wrap( "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE " "project from metadata.")) flags.DEFINE_integer(name="num_tpu_shards", default=8, help=help_wrap("Number of shards (TPU chips).")) return key_flags
def define_experimental(experimental_preloading=True): """Register flags for experimental features. Args: experimental_preloading: Create a flag to specify parallelism of data loading. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if experimental_preloading: flags.DEFINE_bool( name="experimental_preloading", default=False, help=help_wrap( "Support for data.experimental.prefetch_to_device TensorFlow operator." "This feature is experimental and works only with single node." "The environment variable `HBN_TF_REGISTER_DATASETOPS` must be set to `1`." "TensorFlow extension library `dynpatch_prf_remote_call.so` must be loaded via the `LD_PRELOAD` environment variable." "See `-x` switch for `demo_resnet50` script.")) return key_flags
def define_base(data_dir=True, model_dir=True, clean=False, train_epochs=False, epochs_between_evals=False, stop_threshold=False, batch_size=True, num_gpu=False, hooks=False, export_dir=False, distribution_strategy=False, run_eagerly=False, save_checkpoint_steps=True, display_steps=True, no_hpu=True): """Register base flags. Args: data_dir: Create a flag for specifying the input data directory. model_dir: Create a flag for specifying the model file directory. clean: Create a flag for removing the model_dir. train_epochs: Create a flag to specify the number of training epochs. epochs_between_evals: Create a flag to specify the frequency of testing. stop_threshold: Create a flag to specify a threshold accuracy or other eval metric which should trigger the end of training. batch_size: Create a flag to specify the batch size. num_gpu: Create a flag to specify the number of GPUs used. hooks: Create a flag to specify hooks for logging. export_dir: Create a flag to specify where a SavedModel should be exported. distribution_strategy: Create a flag to specify which Distribution Strategy to use. run_eagerly: Create a flag to specify to run eagerly op by op. save_checkpoint_steps: Create a flag to specify number of steps between checkpoints. display_steps: Create a flag to specify number of steps between training results display. no_hpu: Create a flag for controling Habana device. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if data_dir: flags.DEFINE_string( name="data_dir", short_name="dd", default="/tmp", help=help_wrap("The location of the input data.")) key_flags.append("data_dir") if model_dir: flags.DEFINE_string( name="model_dir", short_name="md", default="/tmp", help=help_wrap("The location of the model checkpoint files.")) key_flags.append("model_dir") if clean: flags.DEFINE_boolean( name="clean", default=False, help=help_wrap("If set, model_dir will be removed if it exists.")) key_flags.append("clean") if train_epochs: flags.DEFINE_integer( name="train_epochs", short_name="te", default=1, help=help_wrap("The number of epochs used to train.")) key_flags.append("train_epochs") if epochs_between_evals: flags.DEFINE_integer( name="epochs_between_evals", short_name="ebe", default=1, help=help_wrap("The number of training epochs to run between " "evaluations.")) key_flags.append("epochs_between_evals") if stop_threshold: flags.DEFINE_float( name="stop_threshold", short_name="st", default=None, help=help_wrap("If passed, training will stop at the earlier of " "train_epochs and when the evaluation metric is " "greater than or equal to stop_threshold.")) if batch_size: flags.DEFINE_integer( name="batch_size", short_name="bs", default=32, help=help_wrap("Batch size for training and evaluation. When using " "multiple gpus, this is the global batch size for " "all devices. For example, if the batch size is 32 " "and there are 4 GPUs, each GPU will get 8 examples on " "each step.")) key_flags.append("batch_size") if num_gpu: flags.DEFINE_integer( name="num_gpus", short_name="ng", default=1, help=help_wrap( "How many GPUs to use at each worker with the " "DistributionStrategies API. The default is 1.")) if run_eagerly: flags.DEFINE_boolean( name="run_eagerly", default=False, help="Run the model op by op without building a model function.") if hooks: # Construct a pretty summary of hooks. hook_list_str = ( u"\ufeff Hook:\n" + u"\n".join([u"\ufeff {}".format(key) for key in hooks_helper.HOOKS])) flags.DEFINE_list( name="hooks", short_name="hk", default="LoggingTensorHook", help=help_wrap( u"A list of (case insensitive) strings to specify the names of " u"training hooks.\n{}\n\ufeff Example: `--hooks ProfilerHook," u"ExamplesPerSecondHook`\n See utils.logs.hooks_helper " u"for details.".format(hook_list_str)) ) key_flags.append("hooks") if export_dir: flags.DEFINE_string( name="export_dir", short_name="ed", default=None, help=help_wrap("If set, a SavedModel serialization of the model will " "be exported to this directory at the end of training. " "See the README for more details and relevant links.") ) key_flags.append("export_dir") if distribution_strategy: flags.DEFINE_string( name="distribution_strategy", short_name="ds", default="default", help=help_wrap("The Distribution Strategy to use for training. " "Accepted values are 'off', 'default', 'one_device', " "'mirrored', 'parameter_server', 'collective', " "case insensitive. 'off' means not to use " "Distribution Strategy; 'default' means to choose " "from `MirroredStrategy` or `OneDeviceStrategy` " "according to the number of GPUs.") ) if display_steps: flags.DEFINE_integer( name="display_steps", short_name="dis", default=1, help=help_wrap("How many steps should pass between displaying results " "output")) key_flags.append("display_steps") # default is None to not save any checkpoints # Tip: when setting save_checkpoint_steps, set also model_dir, # otherwise model, events etc. will be saved in /tmp/ if save_checkpoint_steps: flags.DEFINE_integer( name="save_checkpoint_steps", short_name="cs", default=None, help=help_wrap("Number of steps between saving checkpoint.")) key_flags.append("save_checkpoint_steps") if no_hpu: flags.DEFINE_boolean( name="no_hpu", default=False, help=help_wrap("If set Habana device won't be used for training.")) key_flags.append("no_hpu") return key_flags
def define_performance(num_parallel_calls=False, inter_op=False, intra_op=False, synthetic_data=False, max_train_steps=False, max_eval_steps=False, dtype=False, data_loader_image_type=False, all_reduce_alg=False, num_packs=False, tf_gpu_thread_mode=False, datasets_num_private_threads=False, datasets_num_parallel_batches=False, dynamic_loss_scale=False, fp16_implementation=False, loss_scale=False, tf_data_experimental_slack=False, enable_xla=False, force_v2_in_keras_compile=False): """Register flags for specifying performance tuning arguments. Args: num_parallel_calls: Create a flag to specify parallelism of data loading. inter_op: Create a flag to allow specification of inter op threads. intra_op: Create a flag to allow specification of intra op threads. synthetic_data: Create a flag to allow the use of synthetic data. max_train_steps: Create a flags to allow specification of maximum number of training steps max_eval_steps: Create a flags to allow specification of maximum number of evaluation steps dtype: Create flags for specifying dtype. all_reduce_alg: If set forces a specific algorithm for multi-gpu. num_packs: If set provides number of packs for MirroredStrategy's cross device ops. tf_gpu_thread_mode: gpu_private triggers us of private thread pool. datasets_num_private_threads: Number of private threads for datasets. datasets_num_parallel_batches: Determines how many batches to process in parallel when using map and batch from tf.data. dynamic_loss_scale: Allow the "loss_scale" flag to take on the value "dynamic". Only valid if `dtype` is True. fp16_implementation: Create fp16_implementation flag. loss_scale: Controls the loss scaling, normally for mixed-precision training. Can only be turned on if dtype is also True. tf_data_experimental_slack: Determines whether to enable tf.data's `experimental_slack` option. enable_xla: Determines if XLA (auto clustering) is turned on. force_v2_in_keras_compile: Forces the use of run_distribued path even if not using a `strategy`. This is not the same as `tf.distribute.OneDeviceStrategy` Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if num_parallel_calls: flags.DEFINE_integer( name="num_parallel_calls", short_name="npc", default=multiprocessing.cpu_count(), help=help_wrap( "The number of records that are processed in parallel " "during input processing. This can be optimized per " "data set but for generally homogeneous data sets, " "should be approximately the number of available CPU " "cores. (default behavior)")) if inter_op: flags.DEFINE_integer( name="inter_op_parallelism_threads", short_name="inter", default=0, help=help_wrap( "Number of inter_op_parallelism_threads to use for CPU. " "See TensorFlow config.proto for details.")) if intra_op: flags.DEFINE_integer( name="intra_op_parallelism_threads", short_name="intra", default=0, help=help_wrap( "Number of intra_op_parallelism_threads to use for CPU. " "See TensorFlow config.proto for details.")) if synthetic_data: flags.DEFINE_bool( name="use_synthetic_data", short_name="synth", default=False, help=help_wrap( "If set, use fake data (zeroes) instead of a real dataset. " "This mode is useful for performance debugging, as it removes " "input processing steps, but will not learn anything.")) if max_train_steps: flags.DEFINE_integer( name="max_train_steps", short_name="mts", default=None, help=help_wrap( "The model will stop training if the global_step reaches this " "value. If not set, training will run until the specified number " "of epochs have run as usual. It is generally recommended to set " "--train_epochs=1 when using this flag.")) if max_eval_steps: flags.DEFINE_integer( name="max_eval_steps", short_name="mes", default=None, help=help_wrap( "The model will stop evaluation if the global_step reaches this " "value.")) if data_loader_image_type: flags.DEFINE_enum(name="data_loader_image_type", short_name="dlit", default="fp32", enum_values=DTYPE_MAP.keys(), help=help_wrap("data loader images output type")) if dtype: flags.DEFINE_enum( name="dtype", short_name="dt", default="fp32", enum_values=DTYPE_MAP.keys(), help=help_wrap("The TensorFlow datatype used for calculations. " "Variables may be cast to a higher precision on a " "case-by-case basis for numerical stability.")) loss_scale_help_text = ( "The amount to scale the loss by when the model is run. {}. Before " "gradients are computed, the loss is multiplied by the loss scale, " "making all gradients loss_scale times larger. To adjust for this, " "gradients are divided by the loss scale before being applied to " "variables. This is mathematically equivalent to training without " "a loss scale, but the loss scale helps avoid some intermediate " "gradients from underflowing to zero. If not provided the default " "for fp16 is 128 and 1 for all other dtypes.{}") if dynamic_loss_scale: loss_scale_help_text = loss_scale_help_text.format( "This can be an int/float or the string 'dynamic'", " The string 'dynamic' can be used to dynamically determine the " "optimal loss scale during training, but currently this " "significantly slows down performance") loss_scale_validation_msg = ( "loss_scale should be a positive int/float " "or the string 'dynamic'.") else: loss_scale_help_text = loss_scale_help_text.format( "This must be an int/float", "") loss_scale_validation_msg = "loss_scale should be a positive int/float." if loss_scale: flags.DEFINE_string(name="loss_scale", short_name="ls", default=None, help=help_wrap(loss_scale_help_text)) @flags.validator(flag_name="loss_scale", message=loss_scale_validation_msg) def _check_loss_scale(loss_scale): # pylint: disable=unused-variable """Validator to check the loss scale flag is valid.""" if loss_scale is None: return True # null case is handled in get_loss_scale() if loss_scale == "dynamic" and dynamic_loss_scale: return True try: loss_scale = float(loss_scale) except ValueError: return False return loss_scale > 0 if fp16_implementation: # Currently, this flag is only defined for the estimator resnet and transformer models. flags.DEFINE_enum( name="fp16_implementation", default="casting", enum_values=("casting', 'graph_rewrite"), help=help_wrap( "When --dtype=fp16, how fp16 should be implemented. This has no " "impact on correctness. 'casting' will cause manual tf.casts to " "be inserted in the model. 'graph_rewrite' means " "tf.train.experimental.enable_mixed_precision_graph_rewrite will " "be used to automatically use fp16 without any manual casts." )) @flags.multi_flags_validator( ["fp16_implementation", "dtype", "loss_scale"]) def _check_fp16_implementation(flags_dict): """Validator to check fp16_implementation flag is valid.""" if (flags_dict["fp16_implementation"] == "graph_rewrite" and flags_dict["dtype"] != "fp16"): raise flags.ValidationError( "--fp16_implementation should not be " "specified unless --dtype=fp16") return True if all_reduce_alg: flags.DEFINE_string( name="all_reduce_alg", short_name="ara", default=None, help=help_wrap( "Defines the algorithm to use for performing all-reduce." "When specified with MirroredStrategy for single " "worker, this controls " "tf.contrib.distribute.AllReduceCrossTowerOps. When " "specified with MultiWorkerMirroredStrategy, this " "controls " "tf.distribute.experimental.CollectiveCommunication; " "valid options are `ring` and `nccl`.")) if num_packs: flags.DEFINE_integer( name="num_packs", default=1, help=help_wrap("Sets `num_packs` in the cross device ops used in " "MirroredStrategy. For details, see " "tf.distribute.NcclAllReduce.")) if tf_gpu_thread_mode: flags.DEFINE_string( name="tf_gpu_thread_mode", short_name="gt_mode", default=None, help=help_wrap( "Whether and how the GPU device uses its own threadpool.")) flags.DEFINE_integer( name="per_gpu_thread_count", short_name="pgtc", default=0, help=help_wrap( "The number of threads to use for GPU. Only valid when " "tf_gpu_thread_mode is not global.")) if datasets_num_private_threads: flags.DEFINE_integer( name="datasets_num_private_threads", default=None, help=help_wrap( "Number of threads for a private threadpool created for all" "datasets computation..")) if datasets_num_parallel_batches: flags.DEFINE_integer( name="datasets_num_parallel_batches", default=None, help=help_wrap( "Determines how many batches to process in parallel when using " "map and batch from tf.data.")) if tf_data_experimental_slack: flags.DEFINE_boolean( name="tf_data_experimental_slack", default=False, help=help_wrap( "Whether to enable tf.data's `experimental_slack` option.")) if enable_xla: flags.DEFINE_boolean(name="enable_xla", default=False, help="Whether to enable XLA auto jit compilation") if force_v2_in_keras_compile: flags.DEFINE_boolean( name="force_v2_in_keras_compile", default=None, help="Forces the use of run_distribued path even if not" "using a `strategy`. This is not the same as" "`tf.distribute.OneDeviceStrategy`") return key_flags
def define_benchmark(benchmark_log_dir=True, bigquery_uploader=True): """Register benchmarking flags. Args: benchmark_log_dir: Create a flag to specify location for benchmark logging. bigquery_uploader: Create flags for uploading results to BigQuery. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] flags.DEFINE_enum( name="benchmark_logger_type", default="BaseBenchmarkLogger", enum_values=[ "BaseBenchmarkLogger", "BenchmarkFileLogger", "BenchmarkBigQueryLogger" ], help=help_wrap( "The type of benchmark logger to use. Defaults to using " "BaseBenchmarkLogger which logs to STDOUT. Different " "loggers will require other flags to be able to work.")) flags.DEFINE_string( name="benchmark_test_id", short_name="bti", default=None, help=help_wrap( "The unique test ID of the benchmark run. It could be the " "combination of key parameters. It is hardware " "independent and could be used compare the performance " "between different test runs. This flag is designed for " "human consumption, and does not have any impact within " "the system.")) flags.DEFINE_integer( name='log_steps', default=100, help='For every log_steps, we log the timing information such as ' 'examples per second. Besides, for every log_steps, we store the ' 'timestamp of a batch end.') if benchmark_log_dir: flags.DEFINE_string( name="benchmark_log_dir", short_name="bld", default=None, help=help_wrap("The location of the benchmark logging.")) if bigquery_uploader: flags.DEFINE_string( name="gcp_project", short_name="gp", default=None, help=help_wrap( "The GCP project name where the benchmark will be uploaded.")) flags.DEFINE_string( name="bigquery_data_set", short_name="bds", default="test_benchmark", help=help_wrap( "The Bigquery dataset name where the benchmark will be uploaded." )) flags.DEFINE_string( name="bigquery_run_table", short_name="brt", default="benchmark_run", help=help_wrap("The Bigquery table name where the benchmark run " "information will be uploaded.")) flags.DEFINE_string( name="bigquery_run_status_table", short_name="brst", default="benchmark_run_status", help=help_wrap("The Bigquery table name where the benchmark run " "status information will be uploaded.")) flags.DEFINE_string( name="bigquery_metric_table", short_name="bmt", default="benchmark_metric", help=help_wrap( "The Bigquery table name where the benchmark metric " "information will be uploaded.")) @flags.multi_flags_validator( ["benchmark_logger_type", "benchmark_log_dir"], message="--benchmark_logger_type=BenchmarkFileLogger will require " "--benchmark_log_dir being set") def _check_benchmark_log_dir(flags_dict): benchmark_logger_type = flags_dict["benchmark_logger_type"] if benchmark_logger_type == "BenchmarkFileLogger": return flags_dict["benchmark_log_dir"] return True return key_flags