コード例 #1
0
ファイル: Utils.py プロジェクト: duchesneaumathieu/IFT6266
class Batcher:
    def __init__(self, batch_dim, train_percentage=90):
        from Utilities.Sound import get_sound, sound_cut
        from Utilities.Pretreatment import Normalize
        data = sound_cut(get_sound("XqaJ2Ol5cC4").astype(np.float32))
        cut = data.shape[0] * train_percentage // 100
        self.pre = Normalize()
        self.pre.fit(data)
        self.train_data = self.pre.cmp(data[:cut])
        self.valid_data = self.pre.cmp(data[cut:])
        self.batch_dim = batch_dim
        self.n_batch = 0
        self.train_max = self.train_data.shape[0] - batch_dim[
            0] - batch_dim[1] * batch_dim[2] - 1
        self.starts = np.arange(0, self.train_max - batch_dim[2], batch_dim[0])
        np.random.shuffle(self.starts)

    def get_batch(self):
        self.n_batch += 1
        batch_dim = self.batch_dim
        start = self.starts[self.n_batch % self.starts.shape[0]]
        x_data = np.asarray([
            self.train_data[start + i:start + i +
                            batch_dim[1] * batch_dim[2]].reshape(
                                (batch_dim[1], batch_dim[2]))
            for i in range(batch_dim[0])
        ])
        y_data = np.asarray([
            self.train_data[start + i + batch_dim[2]:start + i +
                            (batch_dim[1] + 1) * batch_dim[2]].reshape(
                                (batch_dim[1], batch_dim[2]))
            for i in range(batch_dim[0])
        ])
        return x_data, y_data

    def get_valid_batch(self):
        batch_dim = self.batch_dim
        x_data = np.asarray([
            self.valid_data[i:i + batch_dim[1] * batch_dim[2]].reshape(
                (batch_dim[1], batch_dim[2])) for i in range(batch_dim[0])
        ])
        y_data = np.asarray([
            self.valid_data[i + batch_dim[2]:i +
                            (batch_dim[1] + 1) * batch_dim[2]].reshape(
                                (batch_dim[1], batch_dim[2]))
            for i in range(batch_dim[0])
        ])
        return x_data, y_data

    def get_percentage(self):
        return 100 * self.n_batch * self.batch_dim[0] // self.train_max

    def get_params(self):
        return self.n_batch

    def set_params(self, params):
        self.n_batch = params
コード例 #2
0
ファイル: Utils.py プロジェクト: duchesneaumathieu/IFT6266
 def __init__(self, batch_dim, train_percentage=90):
     from Utilities.Sound import get_sound, sound_cut
     from Utilities.Pretreatment import Normalize
     data = sound_cut(get_sound("XqaJ2Ol5cC4").astype(np.float32))
     cut = data.shape[0] * train_percentage // 100
     self.pre = Normalize()
     self.pre.fit(data)
     self.train_data = self.pre.cmp(data[:cut])
     self.valid_data = self.pre.cmp(data[cut:])
     self.batch_dim = batch_dim
     self.n_batch = 0
     self.train_max = self.train_data.shape[0] - batch_dim[
         0] - batch_dim[1] * batch_dim[2] - 1
     self.starts = np.arange(0, self.train_max - batch_dim[2], batch_dim[0])
     np.random.shuffle(self.starts)
コード例 #3
0
ファイル: Utils.py プロジェクト: duchesneaumathieu/IFT6266
class Batcher:
    def __init__(self, batch_dim, train_percentage=90):
        from Utilities.Sound import get_sound, sound_cut
        from Utilities.Pretreatment import Normalize
        data = sound_cut(get_sound("XqaJ2Ol5cC4").astype(np.float32))
        cut = data.shape[0]*train_percentage//100
        self.pre = Normalize()
        self.pre.fit(data)
        self.train_data = self.pre.cmp(data[:cut])
        self.valid_data = self.pre.cmp(data[cut:])
        self.batch_dim = batch_dim
        self.n_batch = 0
        self.train_max = self.train_data.shape[0]-batch_dim[0]-batch_dim[1]*batch_dim[2]-1
        self.starts = np.arange(0, self.train_max-batch_dim[2], batch_dim[0])
        np.random.shuffle(self.starts)
        
    def get_batch(self):
        self.n_batch += 1
        batch_dim = self.batch_dim
        start = self.starts[self.n_batch%self.starts.shape[0]]
        x_data = np.asarray([self.train_data[start+i:start+i+batch_dim[1]*batch_dim[2]].reshape((batch_dim[1], batch_dim[2])) for i in range(batch_dim[0])])
        y_data = np.asarray([self.train_data[start+i+batch_dim[2]:start+i+(batch_dim[1]+1)*batch_dim[2]].reshape((batch_dim[1], batch_dim[2])) for i in range(batch_dim[0])])
        return x_data, y_data
    
    def get_valid_batch(self):
        batch_dim = self.batch_dim
        x_data = np.asarray([self.valid_data[i:i+batch_dim[1]*batch_dim[2]].reshape((batch_dim[1], batch_dim[2])) for i in range(batch_dim[0])])
        y_data = np.asarray([self.valid_data[i+batch_dim[2]:i+(batch_dim[1]+1)*batch_dim[2]].reshape((batch_dim[1], batch_dim[2])) for i in range(batch_dim[0])])
        return x_data, y_data
        
    def get_percentage(self):
        return 100*self.n_batch*self.batch_dim[0]//self.train_max
    
    def get_params(self):
        return self.n_batch
    
    def set_params(self, params):
        self.n_batch = params
コード例 #4
0
ファイル: Utils.py プロジェクト: duchesneaumathieu/IFT6266
 def __init__(self, batch_dim, train_percentage=90):
     from Utilities.Sound import get_sound, sound_cut
     from Utilities.Pretreatment import Normalize
     data = sound_cut(get_sound("XqaJ2Ol5cC4").astype(np.float32))
     cut = data.shape[0]*train_percentage//100
     self.pre = Normalize()
     self.pre.fit(data)
     self.train_data = self.pre.cmp(data[:cut])
     self.valid_data = self.pre.cmp(data[cut:])
     self.batch_dim = batch_dim
     self.n_batch = 0
     self.train_max = self.train_data.shape[0]-batch_dim[0]-batch_dim[1]*batch_dim[2]-1
     self.starts = np.arange(0, self.train_max-batch_dim[2], batch_dim[0])
     np.random.shuffle(self.starts)
コード例 #5
0
    def __init__(self,
                 name,
                 batch_dim,
                 preprocess=Normalize(),
                 rate=16000,
                 n_valid=128):
        self.name = name
        self.batch_dim = batch_dim
        self.preprocess = preprocess
        self.rate = rate
        self.n_valid = n_valid
        self.valid_len = (batch_dim[0] + 1) * batch_dim[2] * n_valid

        self.sound = sound_cut(get_sound(name).astype(config.floatX))
        self.time = self.sound.shape[0] / float(rate)
        self.preprocess.fit(self.sound[:-self.valid_len])

        self.train = self.preprocess.cmp(self.sound[:-self.valid_len])
        self.valid = self.preprocess.cmp(self.sound[-self.valid_len:])

        self.n_batch = 0