import torch torch.backends.cudnn.benchmark = True fntr.eval_epoch() if __name__ == '__main__': # Disable traceback on Ctrl+c import sys import signal signal.signal(signal.SIGINT, lambda x, y: sys.exit(0)) import configargparse import numpy as np np.set_printoptions(linewidth=np.inf) parser = configargparse.ArgParser() aae_training.add_arguments(parser) # Dataset parser.add_argument('--dataset', default=['w300'], type=str, choices=cfg.get_registered_dataset_names(), nargs='+', help='dataset for training and testing') parser.add_argument('--test-split', default='full', type=str, help='test set split for 300W/AFLW/WFLW', choices=['challenging', 'common', '300w', 'full', 'frontal']+wflw.SUBSETS) parser.add_argument('--benchmark', default=False, action='store_true', help='evaluate performance on testset') # Landmarks parser.add_argument('--sigma', default=7, type=float, help='size of landmarks in heatmap') parser.add_argument('--ocular-norm', default=lmconfig.LANDMARK_OCULAR_NORM, type=str, help='how to normalize landmark errors', choices=['pupil', 'outer', 'none']) args = parser.parse_args()
import configargparse np.set_printoptions(linewidth=np.inf) # Disable traceback on Ctrl+c import signal signal.signal(signal.SIGINT, lambda x, y: sys.exit(0)) parser = configargparse.ArgParser() defaults = { "batchsize": 50, "train_encoder": False, "train_decoder": False } aae_training.add_arguments(parser, defaults) # Dataset parser.add_argument( "--dataset", default=["w300"], type=str, help="dataset for training and testing", choices=["rhpe", "rsna"], nargs="+", ) # Landmarks parser.add_argument( "--lr-heatmaps", default=0.001,