示例#1
0
    import torch
    torch.backends.cudnn.benchmark = True
    fntr.eval_epoch()

if __name__ == '__main__':
    # Disable traceback on Ctrl+c
    import sys
    import signal
    signal.signal(signal.SIGINT, lambda x, y: sys.exit(0))

    import configargparse
    import numpy as np
    np.set_printoptions(linewidth=np.inf)

    parser = configargparse.ArgParser()
    aae_training.add_arguments(parser)

    # Dataset
    parser.add_argument('--dataset', default=['w300'], type=str, choices=cfg.get_registered_dataset_names(),
                        nargs='+', help='dataset for training and testing')
    parser.add_argument('--test-split', default='full', type=str, help='test set split for 300W/AFLW/WFLW',
                        choices=['challenging', 'common', '300w', 'full', 'frontal']+wflw.SUBSETS)

    parser.add_argument('--benchmark', default=False, action='store_true',  help='evaluate performance on testset')

    # Landmarks
    parser.add_argument('--sigma', default=7, type=float, help='size of landmarks in heatmap')
    parser.add_argument('--ocular-norm', default=lmconfig.LANDMARK_OCULAR_NORM, type=str,
                        help='how to normalize landmark errors', choices=['pupil', 'outer', 'none'])

    args = parser.parse_args()
    import configargparse

    np.set_printoptions(linewidth=np.inf)

    # Disable traceback on Ctrl+c
    import signal

    signal.signal(signal.SIGINT, lambda x, y: sys.exit(0))

    parser = configargparse.ArgParser()
    defaults = {
        "batchsize": 50,
        "train_encoder": False,
        "train_decoder": False
    }
    aae_training.add_arguments(parser, defaults)

    # Dataset
    parser.add_argument(
        "--dataset",
        default=["w300"],
        type=str,
        help="dataset for training and testing",
        choices=["rhpe", "rsna"],
        nargs="+",
    )

    # Landmarks
    parser.add_argument(
        "--lr-heatmaps",
        default=0.001,