def plot(profile, fit): """ Method for delegating plotting. """ # rootplotting c = rp.canvas(batch=True) pad = c.pads()[0]._bare() pad.cd() pad.SetRightMargin(0.20) pad.SetLeftMargin(0.15) pad.SetTopMargin(0.10) # Styling profile.GetXaxis().SetTitle(latex(VARX, ROOT=True) + " [GeV]") #+ " = log(m^{2}/p_{T}^{2})") profile.GetYaxis().SetTitle(latex(VARY, ROOT=True) + " [GeV]") profile.GetZaxis().SetTitle("%s %s^{(%s%%)}" % ("#it{k}-NN fitted" if fit else "Measured", latex(VAR, ROOT=True), EFF)) profile.GetYaxis().SetNdivisions(505) profile.GetZaxis().SetNdivisions(505) profile.GetXaxis().SetTitleOffset(1.4) profile.GetYaxis().SetTitleOffset(1.8) profile.GetZaxis().SetTitleOffset(1.3) if ZRANGE: profile.GetZaxis().SetRangeUser(*ZRANGE) pass profile.SetContour(NB_CONTOUR) # Draw profile.Draw('COLZ') BOUNDS[0].DrawCopy("SAME") BOUNDS[1].DrawCopy("SAME") #c.latex("m > 50 GeV", -4.5, BOUNDS[0].Eval(-4.5) + 30, align=21, angle=-37, textsize=13, textcolor=ROOT.kGray + 3) #c.latex("m < 300 GeV", -2.5, BOUNDS[1].Eval(-2.5) - 30, align=23, angle=-57, textsize=13, textcolor=ROOT.kGray + 3) # Decorations #c.text(qualifier=QUALIFIER, ymax=0.92, xmin=0.15) c.text(["#sqrt{s} = 13 TeV", "Multijets"], ATLAS=False, textcolor=ROOT.kWhite) # Save mkdir('figures/knn/') c.save('figures/knn/knn_{}_{:s}_{}_{}.pdf'.format( 'fit' if fit else 'profile', VAR, EFF, MODEL)) c.save('figures/knn/knn_{}_{:s}_{}_{}.eps'.format( 'fit' if fit else 'profile', VAR, EFF, MODEL)) pass
def main (args): # Initialise args, cfg = initialise(args) # Load data data, _, _ = load_data(args.input + 'data.h5', test_full_signal=True) #variable = VAR_TAU21 variable = VAR_N2 #variable = VAR_DECDEEP #variable = VAR_DEEP if variable == VAR_N2: fit_range = FIT_RANGE_N2 elif variable == VAR_TAU21: fit_range = FIT_RANGE_TAU21 elif variable == VAR_DECDEEP: fit_range = FIT_RANGE_DECDEEP elif variable == VAR_DEEP: fit_range = FIT_RANGE_DEEP else: print "invalid variable" return 0 # Add DDT variable add_ddt(data, feat=variable, path='models/ddt/ddt_{}.pkl.gz'.format(variable)) # Load transform ddt = loadclf('models/ddt/ddt_{}.pkl.gz'.format(variable)) # -------------------------------------------------------------------------- # 1D plot # Define variable(s) msk = data['signal'] == 0 # Fill profiles profiles = dict() for var in [variable, variable + 'DDT']: profiles[var] = fill_profile(data[msk], var) pass # Convert to graphs graphs = dict() for key, profile in profiles.iteritems(): # Create arrays from profile arr_x, arr_y, arr_ex, arr_ey = array('d'), array('d'), array('d'), array('d') for ibin in range(1, profile.GetXaxis().GetNbins() + 1): if profile.GetBinContent(ibin) != 0. or profile.GetBinError(ibin) != 0.: arr_x .append(profile.GetBinCenter (ibin)) arr_y .append(profile.GetBinContent(ibin)) arr_ex.append(profile.GetBinWidth (ibin) / 2.) arr_ey.append(profile.GetBinError (ibin)) pass pass # Create graph graphs[key] = ROOT.TGraphErrors(len(arr_x), arr_x, arr_y, arr_ex, arr_ey) pass # Plot 1D transform plot1D(graphs, ddt, arr_x, variable, fit_range) # -------------------------------------------------------------------------- # 2D plot # Create contours binsx = np.linspace(1.5, 5.0, 40 + 1, endpoint=True) if variable == VAR_N2: binsy = np.linspace(0.0, 0.8, 40 + 1, endpoint=True) else: binsy = np.linspace(0.0, 1.4, 40 + 1, endpoint=True) contours = dict() for sig in [0,1]: # Get signal/background mask msk = data['signal'] == sig # Normalise jet weights w = data.loc[msk, VAR_WEIGHT].values w /= math.fsum(w) # Prepare inputs X = data.loc[msk, [VAR_RHODDT, variable]].values # Fill, store contour contour = ROOT.TH2F('2d_{}'.format(sig), "", len(binsx) - 1, binsx, len(binsy) - 1, binsy) root_numpy.fill_hist(contour, X, weights=w) contours[sig] = contour pass # Linear discriminant analysis (LDA) lda = LinearDiscriminantAnalysis() X = data[[VAR_RHODDT, variable]].values y = data['signal'].values w = data[VAR_WEIGHT].values p = w / math.fsum(w) indices = np.random.choice(y.shape[0], size=int(1E+06), p=p, replace=True) lda.fit(X[indices], y[indices]) # Fit weighted sample # -- Linear fit to decision boundary xx, yy = np.meshgrid(binsx, binsy) Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z[:, 1].reshape(xx.shape) yboundary = binsy[np.argmin(np.abs(Z - 0.5), axis=0)] xboundary = binsx lda = LinearRegression() lda.fit(xboundary.reshape(-1,1), yboundary) # Plot 2D scatter plot2D(data, ddt, lda, contours, binsx, binsy, variable) return
def main(args): # Initialise args, cfg = initialise(args) # Load data data, _, _ = load_data(args.input + 'data.h5', train=True) msk_sig = data['signal'] == 1 msk_bkg = ~msk_sig # ------------------------------------------------------------------------- #### #### # Initialise Keras backend #### initialise_backend(args) #### #### # Neural network-specific initialisation of the configuration dict #### initialise_config(args, cfg) #### #### # Keras import(s) #### from keras.models import load_model #### #### # NN #### from run.adversarial.common import add_nn #### with Profile("NN"): #### classifier = load_model('models/adversarial/classifier/full/classifier.h5') #### add_nn(data, classifier, 'NN') #### pass # ------------------------------------------------------------------------- # Fill measured profile profile_meas, _ = fill_profile(data[msk_bkg]) # Add k-NN variable knnfeat = 'knn' add_knn(data, newfeat=knnfeat, path='models/knn/knn_{}_{}.pkl.gz'.format(VAR, EFF)) # Loading KNN classifier knn = loadclf('models/knn/knn_{:s}_{:.0f}.pkl.gz'.format(VAR, EFF)) # Filling fitted profile with Profile("Filling fitted profile"): rebin = 8 edges, centres = dict(), dict() for ax, var in zip(['x', 'y'], [VARX, VARY]): # Short-hands vbins, vmin, vmax = AXIS[var] # Re-binned bin edges @TODO: Make standardised right away? edges[ax] = np.interp( np.linspace(0, vbins, vbins * rebin + 1, endpoint=True), range(vbins + 1), np.linspace(vmin, vmax, vbins + 1, endpoint=True)) # Re-binned bin centres centres[ax] = edges[ax][:-1] + 0.5 * np.diff(edges[ax]) pass # Get predictions evaluated at re-binned bin centres g = dict() g['x'], g['y'] = np.meshgrid(centres['x'], centres['y']) g['x'], g['y'] = standardise(g['x'], g['y']) X = np.vstack((g['x'].flatten(), g['y'].flatten())).T fit = knn.predict(X).reshape(g['x'].shape).T # Fill ROOT "profile" profile_fit = ROOT.TH2F('profile_fit', "", len(edges['x']) - 1, edges['x'].flatten('C'), len(edges['y']) - 1, edges['y'].flatten('C')) root_numpy.array2hist(fit, profile_fit) pass # Plotting with Profile("Plotting"): for fit in [False, True]: # Select correct profile profile = profile_fit if fit else profile_meas # Plot plot(profile, fit) pass pass # Plotting local selection efficiencies for D2-kNN < 0 # -- Compute signal efficiency for sig, msk in zip([True, False], [msk_sig, msk_bkg]): if sig: rgbs = [(247 / 255., 251 / 255., 255 / 255.), (222 / 255., 235 / 255., 247 / 255.), (198 / 255., 219 / 255., 239 / 255.), (158 / 255., 202 / 255., 225 / 255.), (107 / 255., 174 / 255., 214 / 255.), (66 / 255., 146 / 255., 198 / 255.), (33 / 255., 113 / 255., 181 / 255.), (8 / 255., 81 / 255., 156 / 255.), (8 / 255., 48 / 255., 107 / 255.)] red, green, blue = map(np.array, zip(*rgbs)) nb_cols = len(rgbs) stops = np.linspace(0, 1, nb_cols, endpoint=True) else: rgbs = [(255 / 255., 51 / 255., 4 / 255.), (247 / 255., 251 / 255., 255 / 255.), (222 / 255., 235 / 255., 247 / 255.), (198 / 255., 219 / 255., 239 / 255.), (158 / 255., 202 / 255., 225 / 255.), (107 / 255., 174 / 255., 214 / 255.), (66 / 255., 146 / 255., 198 / 255.), (33 / 255., 113 / 255., 181 / 255.), (8 / 255., 81 / 255., 156 / 255.), (8 / 255., 48 / 255., 107 / 255.)] red, green, blue = map(np.array, zip(*rgbs)) nb_cols = len(rgbs) stops = np.array([0] + list( np.linspace(0, 1, nb_cols - 1, endpoint=True) * (1. - EFF / 100.) + EFF / 100.)) pass ROOT.TColor.CreateGradientColorTable(nb_cols, stops, red, green, blue, NB_CONTOUR) # Define arrays shape = (AXIS[VARX][0], AXIS[VARY][0]) bins = [ np.linspace(AXIS[var][1], AXIS[var][2], AXIS[var][0] + 1, endpoint=True) for var in VARS ] x, y, z = (np.zeros(shape) for _ in range(3)) # Create `profile` histogram profile = ROOT.TH2F('profile', "", len(bins[0]) - 1, bins[0].flatten('C'), len(bins[1]) - 1, bins[1].flatten('C')) # Compute inclusive efficiency in bins of `VARY` effs = list() for edges in zip(bins[1][:-1], bins[1][1:]): msk_bin = (data[VARY] > edges[0]) & (data[VARY] < edges[1]) msk_pass = data[knnfeat] < 0 num = data.loc[msk & msk_bin & msk_pass, 'weight_test'].values.sum() den = data.loc[msk & msk_bin, 'weight_test'].values.sum() effs.append(num / den) pass # Fill profile for i, j in itertools.product(*map(range, shape)): # Bin edges in x and y edges = [bin[idx:idx + 2] for idx, bin in zip([i, j], bins)] # Masks msks = [(data[var] > edges[dim][0]) & (data[var] <= edges[dim][1]) for dim, var in enumerate(VARS)] msk_bin = reduce(lambda x, y: x & y, msks) data_ = data[msk & msk_bin] # Set non-zero bin content if np.sum(msk & msk_bin): msk_pass = data_[knnfeat] < 0 num = data.loc[msk & msk_bin & msk_pass, 'weight_test'].values.sum() den = data.loc[msk & msk_bin, 'weight_test'].values.sum() eff = num / den profile.SetBinContent(i + 1, j + 1, eff) pass pass c = rp.canvas(batch=True) pad = c.pads()[0]._bare() pad.cd() pad.SetRightMargin(0.20) pad.SetLeftMargin(0.15) pad.SetTopMargin(0.10) # Styling profile.GetXaxis().SetTitle("Large-#it{R} jet " + latex(VARX, ROOT=True) + " = log(m^{2}/p_{T}^{2})") profile.GetYaxis().SetTitle("Large-#it{R} jet " + latex(VARY, ROOT=True) + " [GeV]") profile.GetZaxis().SetTitle("Selection efficiency for %s^{(%s%%)}" % (latex(VAR, ROOT=True), EFF)) profile.GetYaxis().SetNdivisions(505) profile.GetZaxis().SetNdivisions(505) profile.GetXaxis().SetTitleOffset(1.4) profile.GetYaxis().SetTitleOffset(1.8) profile.GetZaxis().SetTitleOffset(1.3) zrange = (0., 1.) if zrange: profile.GetZaxis().SetRangeUser(*zrange) pass profile.SetContour(NB_CONTOUR) # Draw profile.Draw('COLZ') # Decorations c.text(qualifier=QUALIFIER, ymax=0.92, xmin=0.15) c.text(["#sqrt{s} = 13 TeV", "#it{W} jets" if sig else "Multijets"], ATLAS=False) # -- Efficiencies xaxis = profile.GetXaxis() yaxis = profile.GetYaxis() tlatex = ROOT.TLatex() tlatex.SetTextColor(ROOT.kGray + 2) tlatex.SetTextSize(0.023) tlatex.SetTextFont(42) tlatex.SetTextAlign(32) xt = xaxis.GetBinLowEdge(xaxis.GetNbins()) for eff, ibin in zip(effs, range(1, yaxis.GetNbins() + 1)): yt = yaxis.GetBinCenter(ibin) tlatex.DrawLatex( xt, yt, "%s%.1f%%" % ("#bar{#varepsilon}^{rel}_{%s} = " % ('sig' if sig else 'bkg') if ibin == 1 else '', eff * 100.)) pass # -- Bounds BOUNDS[0].DrawCopy("SAME") BOUNDS[1].DrawCopy("SAME") c.latex("m > 50 GeV", -4.5, BOUNDS[0].Eval(-4.5) + 30, align=21, angle=-37, textsize=13, textcolor=ROOT.kGray + 3) c.latex("m < 300 GeV", -2.5, BOUNDS[1].Eval(-2.5) - 30, align=23, angle=-57, textsize=13, textcolor=ROOT.kGray + 3) # Save mkdir('figures/knn/') c.save('figures/knn/knn_eff_{}_{:s}_{:.0f}.pdf'.format( 'sig' if sig else 'bkg', VAR, EFF)) pass return
def test(data, variable, bg_eff, signal_above=False): # Shout out to Cynthia Brewer and Mark Harrower # [http://colorbrewer2.org]. Palette is colorblind-safe. rgbs = [(247 / 255., 251 / 255., 255 / 255.), (222 / 255., 235 / 255., 247 / 255.), (198 / 255., 219 / 255., 239 / 255.), (158 / 255., 202 / 255., 225 / 255.), (107 / 255., 174 / 255., 214 / 255.), (66 / 255., 146 / 255., 198 / 255.), (33 / 255., 113 / 255., 181 / 255.), (8 / 255., 81 / 255., 156 / 255.), (8 / 255., 48 / 255., 107 / 255.)] red, green, blue = map(np.array, zip(*rgbs)) nb_cols = len(rgbs) stops = np.linspace(0, 1, nb_cols, endpoint=True) ROOT.TColor.CreateGradientColorTable(nb_cols, stops, red, green, blue, NB_CONTOUR) msk_sig = data['signal'] == 1 msk_bkg = ~msk_sig # Fill measured profile with Profile("filling profile"): profile_meas, _ = fill_profile(data[msk_bkg], variable, bg_eff, signal_above=signal_above) # Add k-NN variable with Profile("adding variable"): knnfeat = 'knn' #add_knn(data, feat=variable, newfeat=knnfeat, path='knn_fitter/models/knn_{}_{}.pkl.gz'.format(variable, bg_eff)) add_knn(data, feat=variable, newfeat=knnfeat, path=args.output + '/models/knn_{:s}_{:.0f}.pkl.gz'.format(variable, bg_eff)) # Loading KNN classifier with Profile("loading model"): #knn = loadclf('knn_fitter/models/knn_{:s}_{:.0f}.pkl.gz'.format(variable, bg_eff)) knn = loadclf( args.output + '/models/knn_{:s}_{:.0f}.pkl.gz'.format(variable, bg_eff)) # Filling fitted profile with Profile("Filling fitted profile"): rebin = 8 edges, centres = dict(), dict() for ax, var in zip(['x', 'y'], [VARX, VARY]): # Short-hands vbins, vmin, vmax = AXIS[var] # Re-binned bin edges edges[ax] = np.interp( np.linspace(0, vbins, vbins * rebin + 1, endpoint=True), range(vbins + 1), np.linspace(vmin, vmax, vbins + 1, endpoint=True)) # Re-binned bin centres centres[ax] = edges[ax][:-1] + 0.5 * np.diff(edges[ax]) pass # Get predictions evaluated at re-binned bin centres g = dict() g['x'], g['y'] = np.meshgrid(centres['x'], centres['y']) g['x'], g['y'] = standardise(g['x'], g['y']) X = np.vstack((g['x'].flatten(), g['y'].flatten())).T fit = knn.predict(X).reshape(g['x'].shape).T # Fill ROOT "profile" profile_fit = ROOT.TH2F('profile_fit', "", len(edges['x']) - 1, edges['x'].flatten('C'), len(edges['y']) - 1, edges['y'].flatten('C')) root_numpy.array2hist(fit, profile_fit) pass # Plotting for fit in [False, True]: # Select correct profile profile = profile_fit if fit else profile_meas # Plot plot(profile, fit, variable, bg_eff) pass pass # Plotting local selection efficiencies for D2-kNN < 0 # -- Compute signal efficiency for sig, msk in zip([True, False], [msk_sig, msk_bkg]): if sig: print "working on signal" else: print "working on bg" if sig: rgbs = [(247 / 255., 251 / 255., 255 / 255.), (222 / 255., 235 / 255., 247 / 255.), (198 / 255., 219 / 255., 239 / 255.), (158 / 255., 202 / 255., 225 / 255.), (107 / 255., 174 / 255., 214 / 255.), (66 / 255., 146 / 255., 198 / 255.), (33 / 255., 113 / 255., 181 / 255.), (8 / 255., 81 / 255., 156 / 255.), (8 / 255., 48 / 255., 107 / 255.)] red, green, blue = map(np.array, zip(*rgbs)) nb_cols = len(rgbs) stops = np.linspace(0, 1, nb_cols, endpoint=True) else: rgbs = [(255 / 255., 51 / 255., 4 / 255.), (247 / 255., 251 / 255., 255 / 255.), (222 / 255., 235 / 255., 247 / 255.), (198 / 255., 219 / 255., 239 / 255.), (158 / 255., 202 / 255., 225 / 255.), (107 / 255., 174 / 255., 214 / 255.), (66 / 255., 146 / 255., 198 / 255.), (33 / 255., 113 / 255., 181 / 255.), (8 / 255., 81 / 255., 156 / 255.), (8 / 255., 48 / 255., 107 / 255.)] red, green, blue = map(np.array, zip(*rgbs)) nb_cols = len(rgbs) stops = np.array([0] + list( np.linspace(0, 1, nb_cols - 1, endpoint=True) * (1. - bg_eff / 100.) + bg_eff / 100.)) pass ROOT.TColor.CreateGradientColorTable(nb_cols, stops, red, green, blue, NB_CONTOUR) # Define arrays shape = (AXIS[VARX][0], AXIS[VARY][0]) bins = [ np.linspace(AXIS[var][1], AXIS[var][2], AXIS[var][0] + 1, endpoint=True) for var in VARS ] x, y, z = (np.zeros(shape) for _ in range(3)) # Create `profile` histogram profile = ROOT.TH2F('profile', "", len(bins[0]) - 1, bins[0].flatten('C'), len(bins[1]) - 1, bins[1].flatten('C')) # Compute inclusive efficiency in bins of `VARY` effs = list() for edges in zip(bins[1][:-1], bins[1][1:]): msk_bin = (data[VARY] > edges[0]) & (data[VARY] < edges[1]) if signal_above: msk_pass = data[knnfeat] > 0 # ensure correct cut direction else: msk_pass = data[knnfeat] < 0 num_msk = msk * msk_bin * msk_pass num = data.loc[num_msk, 'weight_test'].values.sum() den = data.loc[msk & msk_bin, 'weight_test'].values.sum() effs.append(num / den) pass # Fill profile with Profile("Fill profile"): for i, j in itertools.product(*map(range, shape)): #print "Fill profile - (i, j) = ({}, {})".format(i,j) # Bin edges in x and y edges = [bin[idx:idx + 2] for idx, bin in zip([i, j], bins)] # Masks msks = [ (data[var] > edges[dim][0]) & (data[var] <= edges[dim][1]) for dim, var in enumerate(VARS) ] msk_bin = reduce(lambda x, y: x & y, msks) # Set non-zero bin content if np.sum(msk & msk_bin): if signal_above: msk_pass = data[ knnfeat] > 0 # ensure correct cut direction else: msk_pass = data[knnfeat] < 0 num_msk = msk * msk_bin * msk_pass num = data.loc[num_msk, 'weight_test'].values.sum() den = data.loc[msk & msk_bin, 'weight_test'].values.sum() eff = num / den profile.SetBinContent(i + 1, j + 1, eff) pass c = rp.canvas(batch=True) pad = c.pads()[0]._bare() pad.cd() pad.SetRightMargin(0.20) pad.SetLeftMargin(0.15) pad.SetTopMargin(0.10) # Styling profile.GetXaxis().SetTitle("Large-#it{R} jet " + latex(VARX, ROOT=True) + " = log(m^{2}/p_{T}^{2})") profile.GetYaxis().SetTitle("Large-#it{R} jet " + latex(VARY, ROOT=True) + " [GeV]") profile.GetZaxis().SetTitle("Selection efficiency for %s^{(%s%%)}" % (latex(variable, ROOT=True), bg_eff)) profile.GetYaxis().SetNdivisions(505) profile.GetZaxis().SetNdivisions(505) profile.GetXaxis().SetTitleOffset(1.4) profile.GetYaxis().SetTitleOffset(1.8) profile.GetZaxis().SetTitleOffset(1.3) zrange = (0., 1.) if zrange: profile.GetZaxis().SetRangeUser(*zrange) pass profile.SetContour(NB_CONTOUR) # Draw profile.Draw('COLZ') # Decorations c.text(qualifier=QUALIFIER, ymax=0.92, xmin=0.15, ATLAS=False) c.text(["#sqrt{s} = 13 TeV", "#it{W} jets" if sig else "Multijets"], ATLAS=False) # -- Efficiencies xaxis = profile.GetXaxis() yaxis = profile.GetYaxis() tlatex = ROOT.TLatex() tlatex.SetTextColor(ROOT.kGray + 2) tlatex.SetTextSize(0.023) tlatex.SetTextFont(42) tlatex.SetTextAlign(32) xt = xaxis.GetBinLowEdge(xaxis.GetNbins()) for eff, ibin in zip(effs, range(1, yaxis.GetNbins() + 1)): yt = yaxis.GetBinCenter(ibin) tlatex.DrawLatex( xt, yt, "%s%.1f%%" % ("#bar{#varepsilon}^{rel}_{%s} = " % ('sig' if sig else 'bkg') if ibin == 1 else '', eff * 100.)) pass # -- Bounds BOUNDS[0].DrawCopy("SAME") BOUNDS[1].DrawCopy("SAME") c.latex("m > 50 GeV", -4.5, BOUNDS[0].Eval(-4.5) + 30, align=21, angle=-37, textsize=13, textcolor=ROOT.kGray + 3) c.latex("m < 300 GeV", -2.5, BOUNDS[1].Eval(-2.5) - 30, align=23, angle=-57, textsize=13, textcolor=ROOT.kGray + 3) # Save mkdir('knn_fitter/figures/') c.save('knn_fitter/figures/knn_eff_{}_{:s}_{:.0f}.pdf'.format( 'sig' if sig else 'bkg', variable, bg_eff)) mkdir(args.output + '/figures/') c.save(args.output + '/figures/knn_eff_{}_{:s}_{:.0f}.pdf'.format( 'sig' if sig else 'bkg', variable, bg_eff)) pass return
def plot (profile, fit): """ Method for delegating plotting. """ # rootplotting c = rp.canvas(batch=True) pad = c.pads()[0]._bare() pad.cd() pad.SetRightMargin(0.20) pad.SetLeftMargin(0.15) pad.SetTopMargin(0.10) # Styling #profile.SetLineColor(4) profile.SetMarkerColor(4) profile.SetMarkerStyle(20) fit.SetLineColor(2) fit.SetMarkerColor(4) fit.SetMarkerStyle(20) profile.GetXaxis().SetTitle( "#it{m}_{jj} [GeV]" ) #latex(VARX, ROOT=True) + " [GeV]") #+ " = log(m^{2}/p_{T}^{2})") profile.GetYaxis().SetTitle( "#it{P}^{#varepsilon=%s%%}" % (EFF) ) #"%s %s^{(%s%%)}" % ("#it{k}-NN fitted" if fit else "Measured", latex(VAR, ROOT=True), EFF)) profile.GetYaxis().SetNdivisions(505) profile.GetXaxis().SetTitleOffset(1.4) profile.GetYaxis().SetTitleOffset(1.4) profile.GetXaxis().SetRangeUser(*XRANGE) #profile.GetXaxis().SetRangeUser(1000, 9000) #fit.GetXaxis().SetRangeUser(1000, 8000) if YRANGE: profile.GetYaxis().SetRangeUser(*YRANGE) pass # Draw Goddamn it # print profile.GetBinContent(10), profile.GetNbinsX(), profile.GetEntries() profile.Draw("AP") fit.Draw("SAME") #("SAME") leg = ROOT.TLegend(0.2, 0.75, 0.5, 0.85) if INPUT=='data': leg.AddEntry(profile, "CR Data", "p") elif INPUT=='mcCR': leg.AddEntry(profile, "CR MC", "p") elif INPUT=='mc': leg.AddEntry(profile, "Full MC", "p") if 'knn' in FIT: fitLegend = "k-NN fit " elif 'poly2' in FIT: fitLegend = "2. order polynomial fit " elif 'poly3' in FIT: fitLegend = "3. order polynomial fit " elif 'erf' in FIT: fitLegend = "Error function fit " if MODEL=='data': fitLegend += "to CR Data" elif MODEL=='mcCR': fitLegend += "to CR MC" elif MODEL=='mc': fitLegend += "to Full MC" leg.AddEntry(fit, fitLegend, "l") leg.Draw() # Save mkdir('figures/knn/') c.save('figures/knn/{}_profile_{:s}_{}_{}_stat{}.pdf'.format( FIT, VAR, EFF, MODEL+INPUT, MIN_STAT)) #c.save('figures/knn/{}_profile_{:s}_{}_{}_stat{}.png'.format( FIT, VAR, EFF, MODEL, MIN_STAT)) c.save('figures/knn/{}_profile_{:s}_{}_{}_stat{}.eps'.format( FIT, VAR, EFF, MODEL+INPUT, MIN_STAT)) del c pass