Пример #1
0
def plot(profile, fit):
    """
    Method for delegating plotting.
    """

    # rootplotting
    c = rp.canvas(batch=True)
    pad = c.pads()[0]._bare()
    pad.cd()
    pad.SetRightMargin(0.20)
    pad.SetLeftMargin(0.15)
    pad.SetTopMargin(0.10)

    # Styling
    profile.GetXaxis().SetTitle(latex(VARX, ROOT=True) +
                                " [GeV]")  #+ " = log(m^{2}/p_{T}^{2})")
    profile.GetYaxis().SetTitle(latex(VARY, ROOT=True) + " [GeV]")
    profile.GetZaxis().SetTitle("%s %s^{(%s%%)}" %
                                ("#it{k}-NN fitted" if fit else "Measured",
                                 latex(VAR, ROOT=True), EFF))

    profile.GetYaxis().SetNdivisions(505)
    profile.GetZaxis().SetNdivisions(505)
    profile.GetXaxis().SetTitleOffset(1.4)
    profile.GetYaxis().SetTitleOffset(1.8)
    profile.GetZaxis().SetTitleOffset(1.3)
    if ZRANGE:
        profile.GetZaxis().SetRangeUser(*ZRANGE)
        pass
    profile.SetContour(NB_CONTOUR)

    # Draw
    profile.Draw('COLZ')
    BOUNDS[0].DrawCopy("SAME")
    BOUNDS[1].DrawCopy("SAME")
    #c.latex("m > 50 GeV",  -4.5, BOUNDS[0].Eval(-4.5) + 30, align=21, angle=-37, textsize=13, textcolor=ROOT.kGray + 3)
    #c.latex("m < 300 GeV", -2.5, BOUNDS[1].Eval(-2.5) - 30, align=23, angle=-57, textsize=13, textcolor=ROOT.kGray + 3)

    # Decorations
    #c.text(qualifier=QUALIFIER, ymax=0.92, xmin=0.15)
    c.text(["#sqrt{s} = 13 TeV", "Multijets"],
           ATLAS=False,
           textcolor=ROOT.kWhite)

    # Save
    mkdir('figures/knn/')
    c.save('figures/knn/knn_{}_{:s}_{}_{}.pdf'.format(
        'fit' if fit else 'profile', VAR, EFF, MODEL))
    c.save('figures/knn/knn_{}_{:s}_{}_{}.eps'.format(
        'fit' if fit else 'profile', VAR, EFF, MODEL))
    pass
Пример #2
0
def main (args):

    # Initialise
    args, cfg = initialise(args)

    # Load data
    data, _, _ = load_data(args.input + 'data.h5', test_full_signal=True)

    #variable = VAR_TAU21
    variable = VAR_N2
    #variable = VAR_DECDEEP
    #variable = VAR_DEEP

    if variable == VAR_N2:
        fit_range = FIT_RANGE_N2
    elif variable == VAR_TAU21:
        fit_range = FIT_RANGE_TAU21
    elif variable == VAR_DECDEEP:
	fit_range = FIT_RANGE_DECDEEP
    elif variable == VAR_DEEP:
	fit_range = FIT_RANGE_DEEP
    else:
	print "invalid variable"
	return 0

    # Add DDT variable
    add_ddt(data, feat=variable, path='models/ddt/ddt_{}.pkl.gz'.format(variable))

    # Load transform
    ddt = loadclf('models/ddt/ddt_{}.pkl.gz'.format(variable))

    # --------------------------------------------------------------------------
    # 1D plot

    # Define variable(s)
    msk = data['signal'] == 0

    # Fill profiles
    profiles = dict()
    for var in [variable, variable + 'DDT']:
        profiles[var] = fill_profile(data[msk], var)
        pass

    # Convert to graphs
    graphs = dict()
    for key, profile in profiles.iteritems():
        # Create arrays from profile
        arr_x, arr_y, arr_ex, arr_ey = array('d'), array('d'), array('d'), array('d')
        for ibin in range(1, profile.GetXaxis().GetNbins() + 1):
            if profile.GetBinContent(ibin) != 0. or profile.GetBinError(ibin) != 0.:
                arr_x .append(profile.GetBinCenter (ibin))
                arr_y .append(profile.GetBinContent(ibin))
                arr_ex.append(profile.GetBinWidth  (ibin) / 2.)
                arr_ey.append(profile.GetBinError  (ibin))
                pass
            pass

        # Create graph
        graphs[key] = ROOT.TGraphErrors(len(arr_x), arr_x, arr_y, arr_ex, arr_ey)
        pass

    # Plot 1D transform
    plot1D(graphs, ddt, arr_x, variable, fit_range)


    # --------------------------------------------------------------------------
    # 2D plot

    # Create contours
    binsx = np.linspace(1.5, 5.0, 40 + 1, endpoint=True)
    if variable == VAR_N2:
    	binsy = np.linspace(0.0, 0.8, 40 + 1, endpoint=True)
    else:
	binsy = np.linspace(0.0, 1.4, 40 + 1, endpoint=True)

    contours = dict()
    for sig in [0,1]:

        # Get signal/background mask
        msk = data['signal'] == sig

        # Normalise jet weights
        w  = data.loc[msk, VAR_WEIGHT].values
        w /= math.fsum(w)

        # Prepare inputs
        X = data.loc[msk, [VAR_RHODDT, variable]].values

        # Fill, store contour
        contour = ROOT.TH2F('2d_{}'.format(sig), "", len(binsx) - 1, binsx, len(binsy) - 1, binsy)
        root_numpy.fill_hist(contour, X, weights=w)
        contours[sig] = contour
        pass

    # Linear discriminant analysis (LDA)
    lda = LinearDiscriminantAnalysis()
    X = data[[VAR_RHODDT, variable]].values
    y = data['signal'].values
    w = data[VAR_WEIGHT].values
    p = w / math.fsum(w)
    indices = np.random.choice(y.shape[0], size=int(1E+06), p=p, replace=True)
    lda.fit(X[indices], y[indices])  # Fit weighted sample

    # -- Linear fit to decision boundary
    xx, yy = np.meshgrid(binsx, binsy)
    Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()])
    Z = Z[:, 1].reshape(xx.shape)
    yboundary = binsy[np.argmin(np.abs(Z - 0.5), axis=0)]
    xboundary = binsx
    lda = LinearRegression()
    lda.fit(xboundary.reshape(-1,1), yboundary)

    # Plot 2D scatter
    plot2D(data, ddt, lda, contours, binsx, binsy, variable)
    return
Пример #3
0
def main(args):

    # Initialise
    args, cfg = initialise(args)

    # Load data
    data, _, _ = load_data(args.input + 'data.h5', train=True)
    msk_sig = data['signal'] == 1
    msk_bkg = ~msk_sig

    # -------------------------------------------------------------------------
    ####
    #### # Initialise Keras backend
    #### initialise_backend(args)
    ####
    #### # Neural network-specific initialisation of the configuration dict
    #### initialise_config(args, cfg)
    ####
    #### # Keras import(s)
    #### from keras.models import load_model
    ####
    #### # NN
    #### from run.adversarial.common import add_nn
    #### with Profile("NN"):
    ####     classifier = load_model('models/adversarial/classifier/full/classifier.h5')
    ####     add_nn(data, classifier, 'NN')
    ####     pass
    # -------------------------------------------------------------------------

    # Fill measured profile
    profile_meas, _ = fill_profile(data[msk_bkg])

    # Add k-NN variable
    knnfeat = 'knn'
    add_knn(data,
            newfeat=knnfeat,
            path='models/knn/knn_{}_{}.pkl.gz'.format(VAR, EFF))

    # Loading KNN classifier
    knn = loadclf('models/knn/knn_{:s}_{:.0f}.pkl.gz'.format(VAR, EFF))

    # Filling fitted profile
    with Profile("Filling fitted profile"):
        rebin = 8
        edges, centres = dict(), dict()
        for ax, var in zip(['x', 'y'], [VARX, VARY]):

            # Short-hands
            vbins, vmin, vmax = AXIS[var]

            # Re-binned bin edges  @TODO: Make standardised right away?
            edges[ax] = np.interp(
                np.linspace(0, vbins, vbins * rebin + 1, endpoint=True),
                range(vbins + 1),
                np.linspace(vmin, vmax, vbins + 1, endpoint=True))

            # Re-binned bin centres
            centres[ax] = edges[ax][:-1] + 0.5 * np.diff(edges[ax])
            pass

        # Get predictions evaluated at re-binned bin centres
        g = dict()
        g['x'], g['y'] = np.meshgrid(centres['x'], centres['y'])
        g['x'], g['y'] = standardise(g['x'], g['y'])

        X = np.vstack((g['x'].flatten(), g['y'].flatten())).T
        fit = knn.predict(X).reshape(g['x'].shape).T

        # Fill ROOT "profile"
        profile_fit = ROOT.TH2F('profile_fit', "",
                                len(edges['x']) - 1, edges['x'].flatten('C'),
                                len(edges['y']) - 1, edges['y'].flatten('C'))
        root_numpy.array2hist(fit, profile_fit)
        pass

    # Plotting
    with Profile("Plotting"):
        for fit in [False, True]:

            # Select correct profile
            profile = profile_fit if fit else profile_meas

            # Plot
            plot(profile, fit)
            pass
        pass

    # Plotting local selection efficiencies for D2-kNN < 0
    # -- Compute signal efficiency
    for sig, msk in zip([True, False], [msk_sig, msk_bkg]):

        if sig:
            rgbs = [(247 / 255., 251 / 255., 255 / 255.),
                    (222 / 255., 235 / 255., 247 / 255.),
                    (198 / 255., 219 / 255., 239 / 255.),
                    (158 / 255., 202 / 255., 225 / 255.),
                    (107 / 255., 174 / 255., 214 / 255.),
                    (66 / 255., 146 / 255., 198 / 255.),
                    (33 / 255., 113 / 255., 181 / 255.),
                    (8 / 255., 81 / 255., 156 / 255.),
                    (8 / 255., 48 / 255., 107 / 255.)]

            red, green, blue = map(np.array, zip(*rgbs))
            nb_cols = len(rgbs)
            stops = np.linspace(0, 1, nb_cols, endpoint=True)
        else:
            rgbs = [(255 / 255., 51 / 255., 4 / 255.),
                    (247 / 255., 251 / 255., 255 / 255.),
                    (222 / 255., 235 / 255., 247 / 255.),
                    (198 / 255., 219 / 255., 239 / 255.),
                    (158 / 255., 202 / 255., 225 / 255.),
                    (107 / 255., 174 / 255., 214 / 255.),
                    (66 / 255., 146 / 255., 198 / 255.),
                    (33 / 255., 113 / 255., 181 / 255.),
                    (8 / 255., 81 / 255., 156 / 255.),
                    (8 / 255., 48 / 255., 107 / 255.)]

            red, green, blue = map(np.array, zip(*rgbs))
            nb_cols = len(rgbs)
            stops = np.array([0] + list(
                np.linspace(0, 1, nb_cols - 1, endpoint=True) *
                (1. - EFF / 100.) + EFF / 100.))
            pass

        ROOT.TColor.CreateGradientColorTable(nb_cols, stops, red, green, blue,
                                             NB_CONTOUR)

        # Define arrays
        shape = (AXIS[VARX][0], AXIS[VARY][0])
        bins = [
            np.linspace(AXIS[var][1],
                        AXIS[var][2],
                        AXIS[var][0] + 1,
                        endpoint=True) for var in VARS
        ]
        x, y, z = (np.zeros(shape) for _ in range(3))

        # Create `profile` histogram
        profile = ROOT.TH2F('profile', "",
                            len(bins[0]) - 1, bins[0].flatten('C'),
                            len(bins[1]) - 1, bins[1].flatten('C'))

        # Compute inclusive efficiency in bins of `VARY`
        effs = list()
        for edges in zip(bins[1][:-1], bins[1][1:]):
            msk_bin = (data[VARY] > edges[0]) & (data[VARY] < edges[1])
            msk_pass = data[knnfeat] < 0
            num = data.loc[msk & msk_bin & msk_pass,
                           'weight_test'].values.sum()
            den = data.loc[msk & msk_bin, 'weight_test'].values.sum()
            effs.append(num / den)
            pass

        # Fill profile
        for i, j in itertools.product(*map(range, shape)):

            # Bin edges in x and y
            edges = [bin[idx:idx + 2] for idx, bin in zip([i, j], bins)]

            # Masks
            msks = [(data[var] > edges[dim][0]) & (data[var] <= edges[dim][1])
                    for dim, var in enumerate(VARS)]
            msk_bin = reduce(lambda x, y: x & y, msks)
            data_ = data[msk & msk_bin]

            # Set non-zero bin content
            if np.sum(msk & msk_bin):
                msk_pass = data_[knnfeat] < 0
                num = data.loc[msk & msk_bin & msk_pass,
                               'weight_test'].values.sum()
                den = data.loc[msk & msk_bin, 'weight_test'].values.sum()
                eff = num / den
                profile.SetBinContent(i + 1, j + 1, eff)
                pass
            pass

        c = rp.canvas(batch=True)
        pad = c.pads()[0]._bare()
        pad.cd()
        pad.SetRightMargin(0.20)
        pad.SetLeftMargin(0.15)
        pad.SetTopMargin(0.10)

        # Styling
        profile.GetXaxis().SetTitle("Large-#it{R} jet " +
                                    latex(VARX, ROOT=True) +
                                    " = log(m^{2}/p_{T}^{2})")
        profile.GetYaxis().SetTitle("Large-#it{R} jet " +
                                    latex(VARY, ROOT=True) + " [GeV]")
        profile.GetZaxis().SetTitle("Selection efficiency for %s^{(%s%%)}" %
                                    (latex(VAR, ROOT=True), EFF))

        profile.GetYaxis().SetNdivisions(505)
        profile.GetZaxis().SetNdivisions(505)
        profile.GetXaxis().SetTitleOffset(1.4)
        profile.GetYaxis().SetTitleOffset(1.8)
        profile.GetZaxis().SetTitleOffset(1.3)
        zrange = (0., 1.)
        if zrange:
            profile.GetZaxis().SetRangeUser(*zrange)
            pass
        profile.SetContour(NB_CONTOUR)

        # Draw
        profile.Draw('COLZ')

        # Decorations
        c.text(qualifier=QUALIFIER, ymax=0.92, xmin=0.15)
        c.text(["#sqrt{s} = 13 TeV", "#it{W} jets" if sig else "Multijets"],
               ATLAS=False)

        # -- Efficiencies
        xaxis = profile.GetXaxis()
        yaxis = profile.GetYaxis()
        tlatex = ROOT.TLatex()
        tlatex.SetTextColor(ROOT.kGray + 2)
        tlatex.SetTextSize(0.023)
        tlatex.SetTextFont(42)
        tlatex.SetTextAlign(32)
        xt = xaxis.GetBinLowEdge(xaxis.GetNbins())
        for eff, ibin in zip(effs, range(1, yaxis.GetNbins() + 1)):
            yt = yaxis.GetBinCenter(ibin)
            tlatex.DrawLatex(
                xt, yt, "%s%.1f%%" %
                ("#bar{#varepsilon}^{rel}_{%s} = " %
                 ('sig' if sig else 'bkg') if ibin == 1 else '', eff * 100.))
            pass

        # -- Bounds
        BOUNDS[0].DrawCopy("SAME")
        BOUNDS[1].DrawCopy("SAME")
        c.latex("m > 50 GeV",
                -4.5,
                BOUNDS[0].Eval(-4.5) + 30,
                align=21,
                angle=-37,
                textsize=13,
                textcolor=ROOT.kGray + 3)
        c.latex("m < 300 GeV",
                -2.5,
                BOUNDS[1].Eval(-2.5) - 30,
                align=23,
                angle=-57,
                textsize=13,
                textcolor=ROOT.kGray + 3)

        # Save
        mkdir('figures/knn/')
        c.save('figures/knn/knn_eff_{}_{:s}_{:.0f}.pdf'.format(
            'sig' if sig else 'bkg', VAR, EFF))
        pass

    return
Пример #4
0
def test(data, variable, bg_eff, signal_above=False):
    # Shout out to Cynthia Brewer and Mark Harrower
    # [http://colorbrewer2.org]. Palette is colorblind-safe.
    rgbs = [(247 / 255., 251 / 255., 255 / 255.),
            (222 / 255., 235 / 255., 247 / 255.),
            (198 / 255., 219 / 255., 239 / 255.),
            (158 / 255., 202 / 255., 225 / 255.),
            (107 / 255., 174 / 255., 214 / 255.),
            (66 / 255., 146 / 255., 198 / 255.),
            (33 / 255., 113 / 255., 181 / 255.),
            (8 / 255., 81 / 255., 156 / 255.),
            (8 / 255., 48 / 255., 107 / 255.)]

    red, green, blue = map(np.array, zip(*rgbs))
    nb_cols = len(rgbs)
    stops = np.linspace(0, 1, nb_cols, endpoint=True)
    ROOT.TColor.CreateGradientColorTable(nb_cols, stops, red, green, blue,
                                         NB_CONTOUR)

    msk_sig = data['signal'] == 1
    msk_bkg = ~msk_sig

    # Fill measured profile
    with Profile("filling profile"):
        profile_meas, _ = fill_profile(data[msk_bkg],
                                       variable,
                                       bg_eff,
                                       signal_above=signal_above)

    # Add k-NN variable
    with Profile("adding variable"):
        knnfeat = 'knn'
        #add_knn(data, feat=variable, newfeat=knnfeat, path='knn_fitter/models/knn_{}_{}.pkl.gz'.format(variable, bg_eff))
        add_knn(data,
                feat=variable,
                newfeat=knnfeat,
                path=args.output +
                '/models/knn_{:s}_{:.0f}.pkl.gz'.format(variable, bg_eff))

    # Loading KNN classifier
    with Profile("loading model"):
        #knn = loadclf('knn_fitter/models/knn_{:s}_{:.0f}.pkl.gz'.format(variable, bg_eff))
        knn = loadclf(
            args.output +
            '/models/knn_{:s}_{:.0f}.pkl.gz'.format(variable, bg_eff))

    # Filling fitted profile
    with Profile("Filling fitted profile"):
        rebin = 8
        edges, centres = dict(), dict()
        for ax, var in zip(['x', 'y'], [VARX, VARY]):

            # Short-hands
            vbins, vmin, vmax = AXIS[var]

            # Re-binned bin edges
            edges[ax] = np.interp(
                np.linspace(0, vbins, vbins * rebin + 1, endpoint=True),
                range(vbins + 1),
                np.linspace(vmin, vmax, vbins + 1, endpoint=True))

            # Re-binned bin centres
            centres[ax] = edges[ax][:-1] + 0.5 * np.diff(edges[ax])
            pass

        # Get predictions evaluated at re-binned bin centres
        g = dict()
        g['x'], g['y'] = np.meshgrid(centres['x'], centres['y'])
        g['x'], g['y'] = standardise(g['x'], g['y'])

        X = np.vstack((g['x'].flatten(), g['y'].flatten())).T
        fit = knn.predict(X).reshape(g['x'].shape).T

        # Fill ROOT "profile"
        profile_fit = ROOT.TH2F('profile_fit', "",
                                len(edges['x']) - 1, edges['x'].flatten('C'),
                                len(edges['y']) - 1, edges['y'].flatten('C'))
        root_numpy.array2hist(fit, profile_fit)
        pass

    # Plotting
    for fit in [False, True]:

        # Select correct profile
        profile = profile_fit if fit else profile_meas

        # Plot
        plot(profile, fit, variable, bg_eff)
        pass
    pass

    # Plotting local selection efficiencies for D2-kNN < 0
    # -- Compute signal efficiency
    for sig, msk in zip([True, False], [msk_sig, msk_bkg]):
        if sig:
            print "working on signal"
        else:
            print "working on bg"

        if sig:
            rgbs = [(247 / 255., 251 / 255., 255 / 255.),
                    (222 / 255., 235 / 255., 247 / 255.),
                    (198 / 255., 219 / 255., 239 / 255.),
                    (158 / 255., 202 / 255., 225 / 255.),
                    (107 / 255., 174 / 255., 214 / 255.),
                    (66 / 255., 146 / 255., 198 / 255.),
                    (33 / 255., 113 / 255., 181 / 255.),
                    (8 / 255., 81 / 255., 156 / 255.),
                    (8 / 255., 48 / 255., 107 / 255.)]

            red, green, blue = map(np.array, zip(*rgbs))
            nb_cols = len(rgbs)
            stops = np.linspace(0, 1, nb_cols, endpoint=True)
        else:
            rgbs = [(255 / 255., 51 / 255., 4 / 255.),
                    (247 / 255., 251 / 255., 255 / 255.),
                    (222 / 255., 235 / 255., 247 / 255.),
                    (198 / 255., 219 / 255., 239 / 255.),
                    (158 / 255., 202 / 255., 225 / 255.),
                    (107 / 255., 174 / 255., 214 / 255.),
                    (66 / 255., 146 / 255., 198 / 255.),
                    (33 / 255., 113 / 255., 181 / 255.),
                    (8 / 255., 81 / 255., 156 / 255.),
                    (8 / 255., 48 / 255., 107 / 255.)]

            red, green, blue = map(np.array, zip(*rgbs))
            nb_cols = len(rgbs)
            stops = np.array([0] + list(
                np.linspace(0, 1, nb_cols - 1, endpoint=True) *
                (1. - bg_eff / 100.) + bg_eff / 100.))
            pass

            ROOT.TColor.CreateGradientColorTable(nb_cols, stops, red, green,
                                                 blue, NB_CONTOUR)

        # Define arrays
        shape = (AXIS[VARX][0], AXIS[VARY][0])
        bins = [
            np.linspace(AXIS[var][1],
                        AXIS[var][2],
                        AXIS[var][0] + 1,
                        endpoint=True) for var in VARS
        ]
        x, y, z = (np.zeros(shape) for _ in range(3))

        # Create `profile` histogram
        profile = ROOT.TH2F('profile', "",
                            len(bins[0]) - 1, bins[0].flatten('C'),
                            len(bins[1]) - 1, bins[1].flatten('C'))

        # Compute inclusive efficiency in bins of `VARY`
        effs = list()
        for edges in zip(bins[1][:-1], bins[1][1:]):
            msk_bin = (data[VARY] > edges[0]) & (data[VARY] < edges[1])
            if signal_above:
                msk_pass = data[knnfeat] > 0  # ensure correct cut direction
            else:
                msk_pass = data[knnfeat] < 0
            num_msk = msk * msk_bin * msk_pass
            num = data.loc[num_msk, 'weight_test'].values.sum()
            den = data.loc[msk & msk_bin, 'weight_test'].values.sum()
            effs.append(num / den)
            pass

        # Fill profile
        with Profile("Fill profile"):
            for i, j in itertools.product(*map(range, shape)):
                #print "Fill profile - (i, j) = ({}, {})".format(i,j)
                # Bin edges in x and y
                edges = [bin[idx:idx + 2] for idx, bin in zip([i, j], bins)]

                # Masks
                msks = [
                    (data[var] > edges[dim][0]) & (data[var] <= edges[dim][1])
                    for dim, var in enumerate(VARS)
                ]
                msk_bin = reduce(lambda x, y: x & y, msks)

                # Set non-zero bin content
                if np.sum(msk & msk_bin):
                    if signal_above:
                        msk_pass = data[
                            knnfeat] > 0  # ensure correct cut direction
                    else:
                        msk_pass = data[knnfeat] < 0
                    num_msk = msk * msk_bin * msk_pass
                    num = data.loc[num_msk, 'weight_test'].values.sum()
                    den = data.loc[msk & msk_bin, 'weight_test'].values.sum()
                    eff = num / den
                    profile.SetBinContent(i + 1, j + 1, eff)
                    pass

        c = rp.canvas(batch=True)
        pad = c.pads()[0]._bare()
        pad.cd()
        pad.SetRightMargin(0.20)
        pad.SetLeftMargin(0.15)
        pad.SetTopMargin(0.10)

        # Styling
        profile.GetXaxis().SetTitle("Large-#it{R} jet " +
                                    latex(VARX, ROOT=True) +
                                    " = log(m^{2}/p_{T}^{2})")
        profile.GetYaxis().SetTitle("Large-#it{R} jet " +
                                    latex(VARY, ROOT=True) + " [GeV]")
        profile.GetZaxis().SetTitle("Selection efficiency for %s^{(%s%%)}" %
                                    (latex(variable, ROOT=True), bg_eff))

        profile.GetYaxis().SetNdivisions(505)
        profile.GetZaxis().SetNdivisions(505)
        profile.GetXaxis().SetTitleOffset(1.4)
        profile.GetYaxis().SetTitleOffset(1.8)
        profile.GetZaxis().SetTitleOffset(1.3)
        zrange = (0., 1.)
        if zrange:
            profile.GetZaxis().SetRangeUser(*zrange)
            pass
        profile.SetContour(NB_CONTOUR)

        # Draw
        profile.Draw('COLZ')

        # Decorations
        c.text(qualifier=QUALIFIER, ymax=0.92, xmin=0.15, ATLAS=False)
        c.text(["#sqrt{s} = 13 TeV", "#it{W} jets" if sig else "Multijets"],
               ATLAS=False)

        # -- Efficiencies
        xaxis = profile.GetXaxis()
        yaxis = profile.GetYaxis()
        tlatex = ROOT.TLatex()
        tlatex.SetTextColor(ROOT.kGray + 2)
        tlatex.SetTextSize(0.023)
        tlatex.SetTextFont(42)
        tlatex.SetTextAlign(32)
        xt = xaxis.GetBinLowEdge(xaxis.GetNbins())
        for eff, ibin in zip(effs, range(1, yaxis.GetNbins() + 1)):
            yt = yaxis.GetBinCenter(ibin)
            tlatex.DrawLatex(
                xt, yt, "%s%.1f%%" %
                ("#bar{#varepsilon}^{rel}_{%s} = " %
                 ('sig' if sig else 'bkg') if ibin == 1 else '', eff * 100.))
            pass

        # -- Bounds
        BOUNDS[0].DrawCopy("SAME")
        BOUNDS[1].DrawCopy("SAME")
        c.latex("m > 50 GeV",
                -4.5,
                BOUNDS[0].Eval(-4.5) + 30,
                align=21,
                angle=-37,
                textsize=13,
                textcolor=ROOT.kGray + 3)
        c.latex("m < 300 GeV",
                -2.5,
                BOUNDS[1].Eval(-2.5) - 30,
                align=23,
                angle=-57,
                textsize=13,
                textcolor=ROOT.kGray + 3)

        # Save
        mkdir('knn_fitter/figures/')
        c.save('knn_fitter/figures/knn_eff_{}_{:s}_{:.0f}.pdf'.format(
            'sig' if sig else 'bkg', variable, bg_eff))
        mkdir(args.output + '/figures/')
        c.save(args.output + '/figures/knn_eff_{}_{:s}_{:.0f}.pdf'.format(
            'sig' if sig else 'bkg', variable, bg_eff))
        pass

    return
Пример #5
0
def plot (profile, fit):
    """
    Method for delegating plotting.
    """

    # rootplotting
    c = rp.canvas(batch=True)
    pad = c.pads()[0]._bare()
    pad.cd()
    pad.SetRightMargin(0.20)
    pad.SetLeftMargin(0.15)
    pad.SetTopMargin(0.10)

    # Styling
    #profile.SetLineColor(4)
    profile.SetMarkerColor(4)
    profile.SetMarkerStyle(20)
    fit.SetLineColor(2)
    fit.SetMarkerColor(4)
    fit.SetMarkerStyle(20)
    profile.GetXaxis().SetTitle( "#it{m}_{jj} [GeV]" ) #latex(VARX, ROOT=True) + " [GeV]") #+ " = log(m^{2}/p_{T}^{2})")
    profile.GetYaxis().SetTitle( "#it{P}^{#varepsilon=%s%%}" % (EFF) )
#"%s %s^{(%s%%)}" % ("#it{k}-NN fitted" if fit else "Measured", latex(VAR, ROOT=True), EFF))

    profile.GetYaxis().SetNdivisions(505)
    profile.GetXaxis().SetTitleOffset(1.4)
    profile.GetYaxis().SetTitleOffset(1.4)
    profile.GetXaxis().SetRangeUser(*XRANGE)
    #profile.GetXaxis().SetRangeUser(1000, 9000)
    #fit.GetXaxis().SetRangeUser(1000, 8000)

    if YRANGE:
        profile.GetYaxis().SetRangeUser(*YRANGE)
        pass

    # Draw Goddamn it

    #    print profile.GetBinContent(10), profile.GetNbinsX(), profile.GetEntries()

    profile.Draw("AP")
    fit.Draw("SAME") #("SAME")
    
    leg = ROOT.TLegend(0.2, 0.75, 0.5, 0.85)

    if INPUT=='data':
        leg.AddEntry(profile, "CR Data", "p")
    elif INPUT=='mcCR':
        leg.AddEntry(profile, "CR MC", "p")
    elif INPUT=='mc':
        leg.AddEntry(profile, "Full MC", "p")


    if 'knn' in FIT:
        fitLegend =  "k-NN fit "
    elif 'poly2' in FIT:
        fitLegend = "2. order polynomial fit " 
    elif 'poly3' in FIT:
        fitLegend = "3. order polynomial fit "
    elif 'erf' in FIT:
        fitLegend = "Error function fit "

    if MODEL=='data':
        fitLegend += "to CR Data"
    elif MODEL=='mcCR':
        fitLegend += "to CR MC"
    elif MODEL=='mc':
        fitLegend += "to Full MC"

    leg.AddEntry(fit, fitLegend, "l")
    leg.Draw() 


    # Save
    mkdir('figures/knn/')
    c.save('figures/knn/{}_profile_{:s}_{}_{}_stat{}.pdf'.format( FIT, VAR, EFF, MODEL+INPUT, MIN_STAT))
    #c.save('figures/knn/{}_profile_{:s}_{}_{}_stat{}.png'.format( FIT, VAR, EFF, MODEL, MIN_STAT))
    c.save('figures/knn/{}_profile_{:s}_{}_{}_stat{}.eps'.format( FIT, VAR, EFF, MODEL+INPUT, MIN_STAT))
    
    del c
    pass