def testSpatialSvd(self): torch.manual_seed(1) model = mnist_torch_model.Net() rounding_algo = unittest.mock.MagicMock() rounding_algo.round.side_effect = [ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 ] mock_eval = unittest.mock.MagicMock() mock_eval.side_effect = [ 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 90, 80, 70, 60, 50, 40, 30, 20, 10, 50 ] layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28)) pruner = SpatialSvdPruner() comp_ratio_select_algo = GreedyCompRatioSelectAlgo( layer_db, pruner, SpatialSvdCostCalculator(), mock_eval, 20, CostMetric.mac, Decimal(0.5), 10, True, None, rounding_algo, True, bokeh_session=None) layer_selector = ConvNoDepthwiseLayerSelector() spatial_svd_algo = CompressionAlgo( layer_db, comp_ratio_select_algo, pruner, mock_eval, layer_selector, modules_to_ignore=[], cost_calculator=SpatialSvdCostCalculator(), use_cuda=next(model.parameters()).is_cuda) compressed_layer_db, stats = spatial_svd_algo.compress_model( CostMetric.mac, trainer=None) self.assertTrue( isinstance(compressed_layer_db.model.conv1, torch.nn.Sequential)) self.assertTrue( isinstance(compressed_layer_db.model.conv2, torch.nn.Sequential)) self.assertTrue(stats.per_layer_stats[0].compression_ratio <= 0.5) self.assertEqual(0.3, stats.per_layer_stats[1].compression_ratio) print("Compressed model:") print(compressed_layer_db.model) print(stats)
def test_select_per_layer_comp_ratios_with_spatial_svd_pruner(self): pruner = SpatialSvdPruner() eval_func = unittest.mock.MagicMock() rounding_algo = unittest.mock.MagicMock() eval_func.side_effect = [ 10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55, 60 ] rounding_algo.round.side_effect = [ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 ] model = mnist_torch_model.Net() layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28)) selected_layers = [ layer for layer in layer_db if isinstance(layer.module, nn.Conv2d) ] layer_db.mark_picked_layers(selected_layers) # Instantiate child greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo( layer_db, pruner, SpatialSvdCostCalculator(), eval_func, 20, CostMetric.mac, Decimal(0.4), 10, True, None, rounding_algo, False, bokeh_session=None) layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios( ) original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db) for layer in layer_db: if layer not in selected_layers: layer_comp_ratio_list.append(LayerCompRatioPair(layer, None)) compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost( layer_db, layer_comp_ratio_list, CostMetric.mac) actual_compression_ratio = compressed_cost.mac / original_cost.mac self.assertTrue( math.isclose(Decimal(0.3), actual_compression_ratio, abs_tol=0.8)) print('\n') for pair in layer_comp_ratio_list: print(pair)
def create_spatial_svd_algo(cls, model: torch.nn.Module, eval_callback: EvalFunction, eval_iterations, input_shape: Tuple, cost_metric: CostMetric, params: SpatialSvdParameters, bokeh_session: BokehServerSession) -> CompressionAlgo: """ Factory method to construct SpatialSvdCompressionAlgo :param model: Model to compress :param eval_callback: Evaluation callback for the model :param eval_iterations: Evaluation iterations :param input_shape: Shape of the input tensor for model :param cost_metric: Cost metric (mac or memory) :param params: Spatial SVD compression parameters :param bokeh_session: The Bokeh Session to display plots :return: An instance of SpatialSvdCompressionAlgo """ # pylint: disable=too-many-locals # Rationale: Factory functions unfortunately need to deal with a lot of parameters # Create a layer database layer_db = LayerDatabase(model, input_shape) use_cuda = next(model.parameters()).is_cuda # Create a pruner pruner = SpatialSvdPruner() cost_calculator = SpatialSvdCostCalculator() comp_ratio_rounding_algo = RankRounder(params.multiplicity, cost_calculator) # Create a comp-ratio selection algorithm if params.mode == SpatialSvdParameters.Mode.auto: greedy_params = params.mode_params.greedy_params comp_ratio_select_algo = GreedyCompRatioSelectAlgo(layer_db, pruner, cost_calculator, eval_callback, eval_iterations, cost_metric, greedy_params.target_comp_ratio, greedy_params.num_comp_ratio_candidates, greedy_params.use_monotonic_fit, greedy_params.saved_eval_scores_dict, comp_ratio_rounding_algo, use_cuda, bokeh_session=bokeh_session) layer_selector = ConvNoDepthwiseLayerSelector() modules_to_ignore = params.mode_params.modules_to_ignore else: # Convert (module,comp-ratio) pairs to (layer,comp-ratio) pairs layer_comp_ratio_pairs = cls._get_layer_pairs(layer_db, params.mode_params.list_of_module_comp_ratio_pairs) comp_ratio_select_algo = ManualCompRatioSelectAlgo(layer_db, layer_comp_ratio_pairs, comp_ratio_rounding_algo, cost_metric=cost_metric) layer_selector = ManualLayerSelector(layer_comp_ratio_pairs) modules_to_ignore = [] # Create the overall Spatial SVD compression algorithm spatial_svd_algo = CompressionAlgo(layer_db, comp_ratio_select_algo, pruner, eval_callback, layer_selector, modules_to_ignore, cost_calculator, use_cuda) return spatial_svd_algo
def test_per_layer_eval_scores(self): url, process = start_bokeh_server_session(8006) bokeh_session = BokehServerSession(url=url, session_id="compression") pruner = unittest.mock.MagicMock() eval_func = unittest.mock.MagicMock() model = mnist_torch_model.Net().to('cpu') layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28)) layer1 = layer_db.find_layer_by_name('conv1') layer_db.mark_picked_layers([layer1]) eval_func.side_effect = [90, 80, 70, 60, 50, 40, 30, 20, 10] # Instantiate child greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo( layer_db, pruner, SpatialSvdCostCalculator(), eval_func, 20, CostMetric.mac, 0.5, 10, True, None, None, False, bokeh_session=None) progress_bar = ProgressBar(1, "eval scores", "green", bokeh_session=bokeh_session) data_table = DataTable(num_columns=3, num_rows=1, column_names=[ '0.1', '0.2', '0.3', '0.4', '0.5', '0.6', '0.7', '0.8', '0.9' ], row_index_names=[layer1.name], bokeh_session=bokeh_session) pruner.prune_model.return_value = layer_db eval_dict = greedy_algo._compute_layerwise_eval_score_per_comp_ratio_candidate( data_table, progress_bar, layer1) self.assertEqual(90, eval_dict[Decimal('0.1')]) bokeh_session.server_session.close("test complete") os.killpg(os.getpgid(process.pid), signal.SIGTERM)
def test_eval_scores_with_spatial_svd_pruner(self): pruner = SpatialSvdPruner() eval_func = unittest.mock.MagicMock() eval_func.side_effect = [ 90, 80, 70, 60, 50, 40, 30, 20, 10, 91, 81, 71, 61, 51, 41, 31, 21, 11 ] model = mnist_torch_model.Net() # Create a layer database layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28)) layer1 = layer_db.find_layer_by_name('conv1') layer2 = layer_db.find_layer_by_name('conv2') layer_db.mark_picked_layers([layer1, layer2]) # Instantiate child greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo( layer_db, pruner, SpatialSvdCostCalculator(), eval_func, 20, CostMetric.mac, 0.5, 10, True, None, None, True, bokeh_session=None) dict = greedy_algo._compute_eval_scores_for_all_comp_ratio_candidates() print() print(dict) self.assertEqual(90, dict['conv1'][Decimal('0.1')]) self.assertEqual(51, dict['conv2'][Decimal('0.5')]) self.assertEqual(21, dict['conv2'][Decimal('0.8')])
def test_per_layer_eval_scores(self): pruner = unittest.mock.MagicMock() eval_func = unittest.mock.MagicMock() # create tf.compat.v1.Session and initialize the weights and biases with zeros config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True # create session with graph sess = tf.compat.v1.Session(graph=tf.Graph(), config=config) with sess.graph.as_default(): # by default, model will be constructed in default graph _ = mnist_tf_model.create_model(data_format='channels_last') sess.run(tf.compat.v1.global_variables_initializer()) # Create a layer database layer_db = LayerDatabase(model=sess, input_shape=(1, 28, 28, 1), working_dir=None) layer1 = layer_db.find_layer_by_name('conv2d/Conv2D') layer_db.mark_picked_layers([layer1]) eval_func.side_effect = [90, 80, 70, 60, 50, 40, 30, 20, 10] url, process = start_bokeh_server_session(8006) bokeh_session = BokehServerSession(url=url, session_id="compression") # Instantiate child greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo( layer_db=layer_db, pruner=pruner, cost_calculator=SpatialSvdCostCalculator(), eval_func=eval_func, eval_iterations=20, cost_metric=CostMetric.mac, target_comp_ratio=0.5, num_candidates=10, use_monotonic_fit=True, saved_eval_scores_dict=None, comp_ratio_rounding_algo=None, use_cuda=False, bokeh_session=bokeh_session) progress_bar = ProgressBar(1, "eval scores", "green", bokeh_session=bokeh_session) data_table = DataTable(num_columns=3, num_rows=1, column_names=[ '0.1', '0.2', '0.3', '0.4', '0.5', '0.6', '0.7', '0.8', '0.9' ], row_index_names=[layer1.name], bokeh_session=bokeh_session) pruner.prune_model.return_value = layer_db eval_dict = greedy_algo._compute_layerwise_eval_score_per_comp_ratio_candidate( data_table, progress_bar, layer1) self.assertEqual(90, eval_dict[Decimal('0.1')]) tf.compat.v1.reset_default_graph() sess.close() bokeh_session.server_session.close("test complete") os.killpg(os.getpgid(process.pid), signal.SIGTERM)
def test_select_per_layer_comp_ratios_with_spatial_svd_pruner(self): pruner = SpatialSvdPruner() eval_func = unittest.mock.MagicMock() rounding_algo = unittest.mock.MagicMock() eval_func.side_effect = [ 10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55, 60 ] rounding_algo.round.side_effect = [ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 ] # create tf.compat.v1.Session and initialize the weights and biases with zeros config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True # create session with graph sess = tf.compat.v1.Session(graph=tf.Graph(), config=config) with sess.graph.as_default(): # by default, model will be constructed in default graph _ = mnist_tf_model.create_model(data_format='channels_last') sess.run(tf.compat.v1.global_variables_initializer()) # Create a layer database layer_db = LayerDatabase(model=sess, input_shape=(1, 28, 28, 1), working_dir=None) selected_layers = [ layer for layer in layer_db if layer.module.type == 'Conv2D' ] layer_db.mark_picked_layers(selected_layers) url, process = start_bokeh_server_session(8006) bokeh_session = BokehServerSession(url=url, session_id="compression") # Instantiate child greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo( layer_db=layer_db, pruner=pruner, cost_calculator=SpatialSvdCostCalculator(), eval_func=eval_func, eval_iterations=20, cost_metric=CostMetric.mac, target_comp_ratio=Decimal(0.4), num_candidates=10, use_monotonic_fit=True, saved_eval_scores_dict=None, comp_ratio_rounding_algo=rounding_algo, use_cuda=False, bokeh_session=bokeh_session) layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios( ) original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db) for layer in layer_db: if layer not in selected_layers: layer_comp_ratio_list.append(LayerCompRatioPair(layer, None)) compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost( layer_db, layer_comp_ratio_list, CostMetric.mac) actual_compression_ratio = compressed_cost.mac / original_cost.mac self.assertTrue( math.isclose(Decimal(0.3), actual_compression_ratio, abs_tol=0.8)) print('\n') for pair in layer_comp_ratio_list: print(pair) tf.compat.v1.reset_default_graph() sess.close() bokeh_session.server_session.close("test complete") os.killpg(os.getpgid(process.pid), signal.SIGTERM)
def test_eval_scores_with_spatial_svd_pruner(self): pruner = SpatialSvdPruner() eval_func = unittest.mock.MagicMock() eval_func.side_effect = [ 90, 80, 70, 60, 50, 40, 30, 20, 10, 91, 81, 71, 61, 51, 41, 31, 21, 11 ] # create tf.compat.v1.Session and initialize the weights and biases with zeros config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True # create session with graph sess = tf.compat.v1.Session(graph=tf.Graph(), config=config) with sess.graph.as_default(): # by default, model will be constructed in default graph _ = mnist_tf_model.create_model(data_format='channels_last') sess.run(tf.compat.v1.global_variables_initializer()) # Create a layer database layer_db = LayerDatabase(model=sess, input_shape=(1, 28, 28, 1), working_dir=None) layer1 = layer_db.find_layer_by_name('conv2d/Conv2D') layer2 = layer_db.find_layer_by_name('conv2d_1/Conv2D') layer_db.mark_picked_layers([layer1, layer2]) url, process = start_bokeh_server_session(8006) bokeh_session = BokehServerSession(url=url, session_id="compression") # Instantiate child greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo( layer_db=layer_db, pruner=pruner, cost_calculator=SpatialSvdCostCalculator(), eval_func=eval_func, eval_iterations=20, cost_metric=CostMetric.mac, target_comp_ratio=0.5, num_candidates=10, use_monotonic_fit=True, saved_eval_scores_dict=None, comp_ratio_rounding_algo=None, use_cuda=False, bokeh_session=bokeh_session) dict = greedy_algo._compute_eval_scores_for_all_comp_ratio_candidates() print() print(dict) self.assertEqual(90, dict['conv2d/Conv2D'][Decimal('0.1')]) self.assertEqual(51, dict['conv2d_1/Conv2D'][Decimal('0.5')]) self.assertEqual(21, dict['conv2d_1/Conv2D'][Decimal('0.8')]) tf.compat.v1.reset_default_graph() sess.close() bokeh_session.server_session.close("test complete") os.killpg(os.getpgid(process.pid), signal.SIGTERM)
def create_spatial_svd_algo(cls, sess: tf.compat.v1.Session, working_dir: str, eval_callback: EvalFunction, eval_iterations, input_shape: Union[Tuple, List[Tuple]], cost_metric: CostMetric, params: SpatialSvdParameters, bokeh_session=None) -> CompressionAlgo: """ Factory method to construct SpatialSvdCompressionAlgo :param sess: Model, represented by a tf.compat.v1.Session, to compress :param working_dir: path to store temp meta and checkpoint files :param eval_callback: Evaluation callback for the model :param eval_iterations: Evaluation iterations :param input_shape: tuple or list of tuples of input shape to the model :param cost_metric: Cost metric (mac or memory) :param params: Spatial SVD compression parameters :param bokeh_session: The Bokeh Session to display plots :return: An instance of SpatialSvdCompressionAlgo """ # pylint: disable=too-many-arguments # pylint: disable=too-many-locals # Rationale: Factory functions unfortunately need to deal with a lot of parameters # Create a layer database layer_db = LayerDatabase(sess, input_shape, working_dir, starting_ops=params.input_op_names, ending_ops=params.output_op_names) use_cuda = False # Create a pruner pruner = SpatialSvdPruner() cost_calculator = SpatialSvdCostCalculator() comp_ratio_rounding_algo = RankRounder(params.multiplicity, cost_calculator) # Create a comp-ratio selection algorithm if params.mode == SpatialSvdParameters.Mode.auto: greedy_params = params.mode_params.greedy_params comp_ratio_select_algo = GreedyCompRatioSelectAlgo( layer_db, pruner, cost_calculator, eval_callback, eval_iterations, cost_metric, greedy_params.target_comp_ratio, greedy_params.num_comp_ratio_candidates, greedy_params.use_monotonic_fit, greedy_params.saved_eval_scores_dict, comp_ratio_rounding_algo, use_cuda, bokeh_session=bokeh_session) layer_selector = ConvNoDepthwiseLayerSelector() modules_to_ignore = params.mode_params.modules_to_ignore else: # Convert (module,comp-ratio) pairs to (layer,comp-ratio) pairs layer_comp_ratio_pairs = cls._get_layer_pairs( layer_db, params.mode_params.list_of_module_comp_ratio_pairs) comp_ratio_select_algo = ManualCompRatioSelectAlgo( layer_db, layer_comp_ratio_pairs, comp_ratio_rounding_algo, cost_metric=cost_metric) layer_selector = ManualLayerSelector(layer_comp_ratio_pairs) modules_to_ignore = [] # Create the overall Spatial SVD compression algorithm spatial_svd_algo = CompressionAlgo(layer_db, comp_ratio_select_algo, pruner, eval_callback, layer_selector, modules_to_ignore, cost_calculator, use_cuda) return spatial_svd_algo
def test_select_per_layer_comp_ratios(self): pruner = unittest.mock.MagicMock() eval_func = unittest.mock.MagicMock() rounding_algo = unittest.mock.MagicMock() rounding_algo.round.side_effect = [ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 ] eval_func.side_effect = [ 10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55, 60 ] model = mnist_torch_model.Net() layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28)) layer1 = layer_db.find_layer_by_name('conv1') layer2 = layer_db.find_layer_by_name('conv2') selected_layers = [layer1, layer2] layer_db.mark_picked_layers([layer1, layer2]) try: os.remove('./data/greedy_selection_eval_scores_dict.pkl') except OSError: pass # Instantiate child greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo( layer_db, pruner, SpatialSvdCostCalculator(), eval_func, 20, CostMetric.mac, Decimal(0.6), 10, True, None, rounding_algo, False, bokeh_session=None) layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios( ) original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db) for layer in layer_db: if layer not in selected_layers: layer_comp_ratio_list.append(LayerCompRatioPair(layer, None)) compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost( layer_db, layer_comp_ratio_list, CostMetric.mac) rounding_algo.round.side_effect = [ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 ] actual_compression_ratio = compressed_cost.mac / original_cost.mac self.assertTrue( math.isclose(Decimal(0.6), actual_compression_ratio, abs_tol=0.05)) self.assertTrue( os.path.isfile('./data/greedy_selection_eval_scores_dict.pkl')) print('\n') for pair in layer_comp_ratio_list: print(pair) # lets repeat with a saved eval_dict greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo( layer_db, pruner, SpatialSvdCostCalculator(), eval_func, 20, CostMetric.mac, Decimal(0.6), 10, True, './data/greedy_selection_eval_scores_dict.pkl', rounding_algo, False, bokeh_session=None) layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios( ) original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db) for layer in layer_db: if layer not in selected_layers: layer_comp_ratio_list.append(LayerCompRatioPair(layer, None)) compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost( layer_db, layer_comp_ratio_list, CostMetric.mac) actual_compression_ratio = compressed_cost.mac / original_cost.mac self.assertTrue( math.isclose(Decimal(0.6), actual_compression_ratio, abs_tol=0.05)) print('\n') for pair in layer_comp_ratio_list: print(pair)