Пример #1
0
    def testSpatialSvd(self):

        torch.manual_seed(1)

        model = mnist_torch_model.Net()

        rounding_algo = unittest.mock.MagicMock()
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]

        mock_eval = unittest.mock.MagicMock()
        mock_eval.side_effect = [
            100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 90, 80, 70, 60, 50, 40,
            30, 20, 10, 50
        ]

        layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28))
        pruner = SpatialSvdPruner()
        comp_ratio_select_algo = GreedyCompRatioSelectAlgo(
            layer_db,
            pruner,
            SpatialSvdCostCalculator(),
            mock_eval,
            20,
            CostMetric.mac,
            Decimal(0.5),
            10,
            True,
            None,
            rounding_algo,
            True,
            bokeh_session=None)

        layer_selector = ConvNoDepthwiseLayerSelector()
        spatial_svd_algo = CompressionAlgo(
            layer_db,
            comp_ratio_select_algo,
            pruner,
            mock_eval,
            layer_selector,
            modules_to_ignore=[],
            cost_calculator=SpatialSvdCostCalculator(),
            use_cuda=next(model.parameters()).is_cuda)

        compressed_layer_db, stats = spatial_svd_algo.compress_model(
            CostMetric.mac, trainer=None)

        self.assertTrue(
            isinstance(compressed_layer_db.model.conv1, torch.nn.Sequential))
        self.assertTrue(
            isinstance(compressed_layer_db.model.conv2, torch.nn.Sequential))
        self.assertTrue(stats.per_layer_stats[0].compression_ratio <= 0.5)
        self.assertEqual(0.3, stats.per_layer_stats[1].compression_ratio)

        print("Compressed model:")
        print(compressed_layer_db.model)

        print(stats)
    def test_select_per_layer_comp_ratios_with_spatial_svd_pruner(self):

        pruner = SpatialSvdPruner()
        eval_func = unittest.mock.MagicMock()
        rounding_algo = unittest.mock.MagicMock()
        eval_func.side_effect = [
            10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55,
            60
        ]
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]
        model = mnist_torch_model.Net()
        layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28))

        selected_layers = [
            layer for layer in layer_db if isinstance(layer.module, nn.Conv2d)
        ]
        layer_db.mark_picked_layers(selected_layers)

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db,
            pruner,
            SpatialSvdCostCalculator(),
            eval_func,
            20,
            CostMetric.mac,
            Decimal(0.4),
            10,
            True,
            None,
            rounding_algo,
            False,
            bokeh_session=None)
        layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios(
        )

        original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db)

        for layer in layer_db:
            if layer not in selected_layers:
                layer_comp_ratio_list.append(LayerCompRatioPair(layer, None))
        compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_db, layer_comp_ratio_list, CostMetric.mac)

        actual_compression_ratio = compressed_cost.mac / original_cost.mac
        self.assertTrue(
            math.isclose(Decimal(0.3), actual_compression_ratio, abs_tol=0.8))

        print('\n')
        for pair in layer_comp_ratio_list:
            print(pair)
Пример #3
0
    def create_spatial_svd_algo(cls, model: torch.nn.Module, eval_callback: EvalFunction, eval_iterations,
                                input_shape: Tuple, cost_metric: CostMetric,
                                params: SpatialSvdParameters, bokeh_session: BokehServerSession) -> CompressionAlgo:
        """
        Factory method to construct SpatialSvdCompressionAlgo

        :param model: Model to compress
        :param eval_callback: Evaluation callback for the model
        :param eval_iterations: Evaluation iterations
        :param input_shape: Shape of the input tensor for model
        :param cost_metric: Cost metric (mac or memory)
        :param params: Spatial SVD compression parameters
        :param bokeh_session: The Bokeh Session to display plots
        :return: An instance of SpatialSvdCompressionAlgo
        """

        # pylint: disable=too-many-locals
        # Rationale: Factory functions unfortunately need to deal with a lot of parameters

        # Create a layer database
        layer_db = LayerDatabase(model, input_shape)
        use_cuda = next(model.parameters()).is_cuda

        # Create a pruner
        pruner = SpatialSvdPruner()
        cost_calculator = SpatialSvdCostCalculator()
        comp_ratio_rounding_algo = RankRounder(params.multiplicity, cost_calculator)

        # Create a comp-ratio selection algorithm
        if params.mode == SpatialSvdParameters.Mode.auto:
            greedy_params = params.mode_params.greedy_params
            comp_ratio_select_algo = GreedyCompRatioSelectAlgo(layer_db, pruner, cost_calculator, eval_callback,
                                                               eval_iterations, cost_metric,
                                                               greedy_params.target_comp_ratio,
                                                               greedy_params.num_comp_ratio_candidates,
                                                               greedy_params.use_monotonic_fit,
                                                               greedy_params.saved_eval_scores_dict,
                                                               comp_ratio_rounding_algo, use_cuda,
                                                               bokeh_session=bokeh_session)
            layer_selector = ConvNoDepthwiseLayerSelector()
            modules_to_ignore = params.mode_params.modules_to_ignore
        else:
            # Convert (module,comp-ratio) pairs to (layer,comp-ratio) pairs
            layer_comp_ratio_pairs = cls._get_layer_pairs(layer_db, params.mode_params.list_of_module_comp_ratio_pairs)

            comp_ratio_select_algo = ManualCompRatioSelectAlgo(layer_db,
                                                               layer_comp_ratio_pairs,
                                                               comp_ratio_rounding_algo, cost_metric=cost_metric)

            layer_selector = ManualLayerSelector(layer_comp_ratio_pairs)
            modules_to_ignore = []

        # Create the overall Spatial SVD compression algorithm
        spatial_svd_algo = CompressionAlgo(layer_db, comp_ratio_select_algo, pruner, eval_callback,
                                           layer_selector, modules_to_ignore, cost_calculator, use_cuda)

        return spatial_svd_algo
    def test_per_layer_eval_scores(self):

        url, process = start_bokeh_server_session(8006)
        bokeh_session = BokehServerSession(url=url, session_id="compression")

        pruner = unittest.mock.MagicMock()
        eval_func = unittest.mock.MagicMock()

        model = mnist_torch_model.Net().to('cpu')

        layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28))
        layer1 = layer_db.find_layer_by_name('conv1')
        layer_db.mark_picked_layers([layer1])

        eval_func.side_effect = [90, 80, 70, 60, 50, 40, 30, 20, 10]

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db,
            pruner,
            SpatialSvdCostCalculator(),
            eval_func,
            20,
            CostMetric.mac,
            0.5,
            10,
            True,
            None,
            None,
            False,
            bokeh_session=None)
        progress_bar = ProgressBar(1,
                                   "eval scores",
                                   "green",
                                   bokeh_session=bokeh_session)
        data_table = DataTable(num_columns=3,
                               num_rows=1,
                               column_names=[
                                   '0.1', '0.2', '0.3', '0.4', '0.5', '0.6',
                                   '0.7', '0.8', '0.9'
                               ],
                               row_index_names=[layer1.name],
                               bokeh_session=bokeh_session)
        pruner.prune_model.return_value = layer_db
        eval_dict = greedy_algo._compute_layerwise_eval_score_per_comp_ratio_candidate(
            data_table, progress_bar, layer1)

        self.assertEqual(90, eval_dict[Decimal('0.1')])
        bokeh_session.server_session.close("test complete")
        os.killpg(os.getpgid(process.pid), signal.SIGTERM)
    def test_eval_scores_with_spatial_svd_pruner(self):

        pruner = SpatialSvdPruner()
        eval_func = unittest.mock.MagicMock()
        eval_func.side_effect = [
            90, 80, 70, 60, 50, 40, 30, 20, 10, 91, 81, 71, 61, 51, 41, 31, 21,
            11
        ]

        model = mnist_torch_model.Net()

        # Create a layer database
        layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28))

        layer1 = layer_db.find_layer_by_name('conv1')
        layer2 = layer_db.find_layer_by_name('conv2')
        layer_db.mark_picked_layers([layer1, layer2])

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db,
            pruner,
            SpatialSvdCostCalculator(),
            eval_func,
            20,
            CostMetric.mac,
            0.5,
            10,
            True,
            None,
            None,
            True,
            bokeh_session=None)
        dict = greedy_algo._compute_eval_scores_for_all_comp_ratio_candidates()

        print()
        print(dict)
        self.assertEqual(90, dict['conv1'][Decimal('0.1')])

        self.assertEqual(51, dict['conv2'][Decimal('0.5')])
        self.assertEqual(21, dict['conv2'][Decimal('0.8')])
    def test_per_layer_eval_scores(self):

        pruner = unittest.mock.MagicMock()
        eval_func = unittest.mock.MagicMock()

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        layer_db = LayerDatabase(model=sess,
                                 input_shape=(1, 28, 28, 1),
                                 working_dir=None)
        layer1 = layer_db.find_layer_by_name('conv2d/Conv2D')

        layer_db.mark_picked_layers([layer1])
        eval_func.side_effect = [90, 80, 70, 60, 50, 40, 30, 20, 10]

        url, process = start_bokeh_server_session(8006)
        bokeh_session = BokehServerSession(url=url, session_id="compression")

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db=layer_db,
            pruner=pruner,
            cost_calculator=SpatialSvdCostCalculator(),
            eval_func=eval_func,
            eval_iterations=20,
            cost_metric=CostMetric.mac,
            target_comp_ratio=0.5,
            num_candidates=10,
            use_monotonic_fit=True,
            saved_eval_scores_dict=None,
            comp_ratio_rounding_algo=None,
            use_cuda=False,
            bokeh_session=bokeh_session)
        progress_bar = ProgressBar(1,
                                   "eval scores",
                                   "green",
                                   bokeh_session=bokeh_session)
        data_table = DataTable(num_columns=3,
                               num_rows=1,
                               column_names=[
                                   '0.1', '0.2', '0.3', '0.4', '0.5', '0.6',
                                   '0.7', '0.8', '0.9'
                               ],
                               row_index_names=[layer1.name],
                               bokeh_session=bokeh_session)

        pruner.prune_model.return_value = layer_db
        eval_dict = greedy_algo._compute_layerwise_eval_score_per_comp_ratio_candidate(
            data_table, progress_bar, layer1)

        self.assertEqual(90, eval_dict[Decimal('0.1')])

        tf.compat.v1.reset_default_graph()
        sess.close()

        bokeh_session.server_session.close("test complete")
        os.killpg(os.getpgid(process.pid), signal.SIGTERM)
    def test_select_per_layer_comp_ratios_with_spatial_svd_pruner(self):

        pruner = SpatialSvdPruner()
        eval_func = unittest.mock.MagicMock()
        rounding_algo = unittest.mock.MagicMock()
        eval_func.side_effect = [
            10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55,
            60
        ]
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        layer_db = LayerDatabase(model=sess,
                                 input_shape=(1, 28, 28, 1),
                                 working_dir=None)

        selected_layers = [
            layer for layer in layer_db if layer.module.type == 'Conv2D'
        ]
        layer_db.mark_picked_layers(selected_layers)

        url, process = start_bokeh_server_session(8006)
        bokeh_session = BokehServerSession(url=url, session_id="compression")

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db=layer_db,
            pruner=pruner,
            cost_calculator=SpatialSvdCostCalculator(),
            eval_func=eval_func,
            eval_iterations=20,
            cost_metric=CostMetric.mac,
            target_comp_ratio=Decimal(0.4),
            num_candidates=10,
            use_monotonic_fit=True,
            saved_eval_scores_dict=None,
            comp_ratio_rounding_algo=rounding_algo,
            use_cuda=False,
            bokeh_session=bokeh_session)

        layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios(
        )

        original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db)

        for layer in layer_db:
            if layer not in selected_layers:
                layer_comp_ratio_list.append(LayerCompRatioPair(layer, None))
        compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_db, layer_comp_ratio_list, CostMetric.mac)

        actual_compression_ratio = compressed_cost.mac / original_cost.mac
        self.assertTrue(
            math.isclose(Decimal(0.3), actual_compression_ratio, abs_tol=0.8))

        print('\n')
        for pair in layer_comp_ratio_list:
            print(pair)

        tf.compat.v1.reset_default_graph()
        sess.close()

        bokeh_session.server_session.close("test complete")
        os.killpg(os.getpgid(process.pid), signal.SIGTERM)
    def test_eval_scores_with_spatial_svd_pruner(self):

        pruner = SpatialSvdPruner()
        eval_func = unittest.mock.MagicMock()
        eval_func.side_effect = [
            90, 80, 70, 60, 50, 40, 30, 20, 10, 91, 81, 71, 61, 51, 41, 31, 21,
            11
        ]

        # create tf.compat.v1.Session and initialize the weights and biases with zeros
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True

        # create session with graph
        sess = tf.compat.v1.Session(graph=tf.Graph(), config=config)

        with sess.graph.as_default():
            # by default, model will be constructed in default graph
            _ = mnist_tf_model.create_model(data_format='channels_last')
            sess.run(tf.compat.v1.global_variables_initializer())

        # Create a layer database
        layer_db = LayerDatabase(model=sess,
                                 input_shape=(1, 28, 28, 1),
                                 working_dir=None)
        layer1 = layer_db.find_layer_by_name('conv2d/Conv2D')
        layer2 = layer_db.find_layer_by_name('conv2d_1/Conv2D')

        layer_db.mark_picked_layers([layer1, layer2])

        url, process = start_bokeh_server_session(8006)
        bokeh_session = BokehServerSession(url=url, session_id="compression")

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db=layer_db,
            pruner=pruner,
            cost_calculator=SpatialSvdCostCalculator(),
            eval_func=eval_func,
            eval_iterations=20,
            cost_metric=CostMetric.mac,
            target_comp_ratio=0.5,
            num_candidates=10,
            use_monotonic_fit=True,
            saved_eval_scores_dict=None,
            comp_ratio_rounding_algo=None,
            use_cuda=False,
            bokeh_session=bokeh_session)

        dict = greedy_algo._compute_eval_scores_for_all_comp_ratio_candidates()

        print()
        print(dict)
        self.assertEqual(90, dict['conv2d/Conv2D'][Decimal('0.1')])

        self.assertEqual(51, dict['conv2d_1/Conv2D'][Decimal('0.5')])
        self.assertEqual(21, dict['conv2d_1/Conv2D'][Decimal('0.8')])

        tf.compat.v1.reset_default_graph()
        sess.close()

        bokeh_session.server_session.close("test complete")
        os.killpg(os.getpgid(process.pid), signal.SIGTERM)
Пример #9
0
    def create_spatial_svd_algo(cls,
                                sess: tf.compat.v1.Session,
                                working_dir: str,
                                eval_callback: EvalFunction,
                                eval_iterations,
                                input_shape: Union[Tuple, List[Tuple]],
                                cost_metric: CostMetric,
                                params: SpatialSvdParameters,
                                bokeh_session=None) -> CompressionAlgo:
        """
        Factory method to construct SpatialSvdCompressionAlgo

        :param sess: Model, represented by a tf.compat.v1.Session, to compress
        :param working_dir: path to store temp meta and checkpoint files
        :param eval_callback: Evaluation callback for the model
        :param eval_iterations: Evaluation iterations
        :param input_shape: tuple or list of tuples of input shape to the model
        :param cost_metric: Cost metric (mac or memory)
        :param params: Spatial SVD compression parameters
        :param bokeh_session: The Bokeh Session to display plots
        :return: An instance of SpatialSvdCompressionAlgo
        """

        # pylint: disable=too-many-arguments
        # pylint: disable=too-many-locals
        # Rationale: Factory functions unfortunately need to deal with a lot of parameters

        # Create a layer database
        layer_db = LayerDatabase(sess,
                                 input_shape,
                                 working_dir,
                                 starting_ops=params.input_op_names,
                                 ending_ops=params.output_op_names)
        use_cuda = False

        # Create a pruner
        pruner = SpatialSvdPruner()
        cost_calculator = SpatialSvdCostCalculator()
        comp_ratio_rounding_algo = RankRounder(params.multiplicity,
                                               cost_calculator)

        # Create a comp-ratio selection algorithm
        if params.mode == SpatialSvdParameters.Mode.auto:
            greedy_params = params.mode_params.greedy_params
            comp_ratio_select_algo = GreedyCompRatioSelectAlgo(
                layer_db,
                pruner,
                cost_calculator,
                eval_callback,
                eval_iterations,
                cost_metric,
                greedy_params.target_comp_ratio,
                greedy_params.num_comp_ratio_candidates,
                greedy_params.use_monotonic_fit,
                greedy_params.saved_eval_scores_dict,
                comp_ratio_rounding_algo,
                use_cuda,
                bokeh_session=bokeh_session)
            layer_selector = ConvNoDepthwiseLayerSelector()
            modules_to_ignore = params.mode_params.modules_to_ignore

        else:
            # Convert (module,comp-ratio) pairs to (layer,comp-ratio) pairs
            layer_comp_ratio_pairs = cls._get_layer_pairs(
                layer_db, params.mode_params.list_of_module_comp_ratio_pairs)

            comp_ratio_select_algo = ManualCompRatioSelectAlgo(
                layer_db,
                layer_comp_ratio_pairs,
                comp_ratio_rounding_algo,
                cost_metric=cost_metric)

            layer_selector = ManualLayerSelector(layer_comp_ratio_pairs)
            modules_to_ignore = []

        # Create the overall Spatial SVD compression algorithm
        spatial_svd_algo = CompressionAlgo(layer_db, comp_ratio_select_algo,
                                           pruner, eval_callback,
                                           layer_selector, modules_to_ignore,
                                           cost_calculator, use_cuda)

        return spatial_svd_algo
    def test_select_per_layer_comp_ratios(self):

        pruner = unittest.mock.MagicMock()
        eval_func = unittest.mock.MagicMock()
        rounding_algo = unittest.mock.MagicMock()
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]
        eval_func.side_effect = [
            10, 20, 30, 40, 50, 60, 70, 80, 90, 11, 21, 31, 35, 40, 45, 50, 55,
            60
        ]

        model = mnist_torch_model.Net()
        layer_db = LayerDatabase(model, input_shape=(1, 1, 28, 28))

        layer1 = layer_db.find_layer_by_name('conv1')
        layer2 = layer_db.find_layer_by_name('conv2')
        selected_layers = [layer1, layer2]
        layer_db.mark_picked_layers([layer1, layer2])

        try:
            os.remove('./data/greedy_selection_eval_scores_dict.pkl')
        except OSError:
            pass

        # Instantiate child
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db,
            pruner,
            SpatialSvdCostCalculator(),
            eval_func,
            20,
            CostMetric.mac,
            Decimal(0.6),
            10,
            True,
            None,
            rounding_algo,
            False,
            bokeh_session=None)

        layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios(
        )

        original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db)

        for layer in layer_db:
            if layer not in selected_layers:
                layer_comp_ratio_list.append(LayerCompRatioPair(layer, None))
        compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_db, layer_comp_ratio_list, CostMetric.mac)
        rounding_algo.round.side_effect = [
            0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4,
            0.5, 0.6, 0.7, 0.8, 0.9
        ]
        actual_compression_ratio = compressed_cost.mac / original_cost.mac
        self.assertTrue(
            math.isclose(Decimal(0.6), actual_compression_ratio, abs_tol=0.05))
        self.assertTrue(
            os.path.isfile('./data/greedy_selection_eval_scores_dict.pkl'))

        print('\n')
        for pair in layer_comp_ratio_list:
            print(pair)

        # lets repeat with a saved eval_dict
        greedy_algo = comp_ratio_select.GreedyCompRatioSelectAlgo(
            layer_db,
            pruner,
            SpatialSvdCostCalculator(),
            eval_func,
            20,
            CostMetric.mac,
            Decimal(0.6),
            10,
            True,
            './data/greedy_selection_eval_scores_dict.pkl',
            rounding_algo,
            False,
            bokeh_session=None)
        layer_comp_ratio_list, stats = greedy_algo.select_per_layer_comp_ratios(
        )

        original_cost = SpatialSvdCostCalculator.compute_model_cost(layer_db)

        for layer in layer_db:
            if layer not in selected_layers:
                layer_comp_ratio_list.append(LayerCompRatioPair(layer, None))
        compressed_cost = SpatialSvdCostCalculator.calculate_compressed_cost(
            layer_db, layer_comp_ratio_list, CostMetric.mac)

        actual_compression_ratio = compressed_cost.mac / original_cost.mac
        self.assertTrue(
            math.isclose(Decimal(0.6), actual_compression_ratio, abs_tol=0.05))

        print('\n')
        for pair in layer_comp_ratio_list:
            print(pair)