コード例 #1
0
    def test_threshold_create(self, sm_network):
        expected = pd.DataFrame([[1, 1, 2, 1, 3],
                                 [0, 0, 2, 2, 3],
                                 [0, 1, 1, 1, 3],
                                 [0, 0, 2, 0, 2],
                                 [1, 0, 2, 1, 2],
                                 [1, 0, 0, 0, 1],
                                 [0, 1, 0, 1, 2],
                                 [0, 0, 0, 0, 0],
                                 [1, 1, 1, 2, 2]],
                                columns=["W", "A", "A_sum", "W_sum", "degree"],
                                index=[0, 1, 2, 3, 4, 5, 6, 7, 8])
        expected["A_t2"] = np.where(expected['A_sum'] > 2, 1, 0)
        expected["W_tp50"] = np.where(expected['W_sum']/expected['degree'] > 0.5, 1, 0)

        tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y')
        tmle.define_threshold(variable='A', threshold=2, definition='sum')
        tmle.define_threshold(variable='W', threshold=0.5, definition='mean')
        created = tmle.df_restricted
        # Checking that expected is the same as the created

        columns = ["A", "A_t2", "W_tp50"]
        pdt.assert_frame_equal(expected[columns], created[columns], check_dtype=False)
コード例 #2
0
                results.loc[i, 'var_' + str(p)] = stmle.conditional_se**2
                results.loc[i, 'lcl_' + str(p)] = stmle.conditional_ci[0]
                results.loc[i, 'ucl_' + str(p)] = stmle.conditional_ci[1]
            except:
                results.loc[i, 'bias_' + str(p)] = np.nan
                results.loc[i, 'var_' + str(p)] = np.nan
                results.loc[i, 'lcl_' + str(p)] = np.nan
                results.loc[i, 'ucl_' + str(p)] = np.nan

    else:
        # Network TMLE
        ntmle = NetworkTMLE(H,
                            exposure=exposure,
                            outcome=outcome,
                            degree_restrict=degree_restrict)
        ntmle.define_threshold(variable='diet', threshold=3, definition='sum')
        ntmle.exposure_model(gin_model)
        ntmle.exposure_map_model(gsn_model,
                                 measure=measure_gs,
                                 distribution=distribution_gs)
        ntmle.outcome_model(qn_model, distribution='normal')
        for p in prop_treated:  # loops through all treatment plans
            try:
                if shift:
                    z = odds_to_probability(np.exp(log_odds + p))
                    ntmle.fit(p=z, bound=0.01)
                else:
                    ntmle.fit(p=p, bound=0.01)
                results.loc[i, 'bias_' +
                            str(p)] = ntmle.marginal_outcome - truth[p]
                results.loc[i, 'var_' + str(p)] = ntmle.conditional_variance