コード例 #1
0
 def test_error_fit_gsmodel(self, r_network):
     tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y')
     tmle.exposure_model('W')
     # tmle.exposure_map_model('W', distribution=None)
     tmle.outcome_model('A + W')
     with pytest.raises(ValueError):
         tmle.fit(p=0.0, samples=10)
コード例 #2
0
 def test_marginal_vector_length_stoch(self, r_network):
     tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y')
     tmle.exposure_model('W + W_sum')
     tmle.exposure_map_model('A + W + W_sum', distribution=None)
     tmle.outcome_model('A + W + A_sum + W_sum')
     tmle.fit(p=0.4, samples=10, seed=20110129)
     assert len(tmle.marginals_vector) == 10
コード例 #3
0
 def test_error_summary(self, r_network):
     tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y')
     tmle.exposure_model('W')
     tmle.exposure_map_model('W', distribution=None)
     tmle.outcome_model('A + W')
     with pytest.raises(ValueError):
         tmle.summary()
コード例 #4
0
    def test_check_denominator_est(self, r_network):
        tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y')
        tmle.exposure_model('W + W_sum')
        tmle.exposure_map_model('A + W + W_sum', distribution=None)
        tmle.outcome_model('A + W + A_sum + W_sum')

        assert tmle._denominator_estimated_ is False
        tmle.fit(p=0.4, samples=5, seed=20110129)
        assert tmle._denominator_estimated_ is True
コード例 #5
0
    def test_error_p_bound(self, r_network):
        tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y')
        tmle.exposure_model('W')
        tmle.exposure_map_model('W', distribution=None)
        tmle.outcome_model('A + W')
        # For single 'p'
        with pytest.raises(ValueError):
            tmle.fit(p=1.5, samples=10)

        # For multiple 'p'
        with pytest.raises(ValueError):
            tmle.fit(p=[0.1, 1.5, 0.1,
                        0.1, 0.1, 0.1,
                        0.1, 0.1, 0.1], samples=100)
コード例 #6
0
    def test_gmodel_params(self, r_network):
        # Nonparametric g-model
        tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y')
        tmle.exposure_model('W + W_sum')
        tmle.exposure_map_model('A + W + W_sum', distribution=None)
        tmle.outcome_model('A + A_sum + W + W_sum')
        tmle.fit(p=0.5, samples=1)

        sas_gi_param = [-1.2043, 1.4001, 0.6412]
        est_params = tmle._treatment_models[0].params
        npt.assert_allclose(est_params, sas_gi_param, atol=1e-4)

        sas_gs1_param = [-1.8720, 0.1960, 0.0815, 1.6364]
        est_params = tmle._treatment_models[1].params
        npt.assert_allclose(est_params, sas_gs1_param, atol=1e-4)

        sas_gs2_param = [-2.7908, -0.2574, -0.1038, 1.7206, -0.2127]
        est_params = tmle._treatment_models[2].params
        npt.assert_allclose(est_params, sas_gs2_param, atol=1e-4)

        # Poisson gs-model
        tmle.exposure_model('W + W_sum')
        tmle.exposure_map_model('A + W + W_sum', distribution='poisson', measure='sum')
        tmle.fit(p=0.5, samples=1)

        sas_gi_param = [-1.2043, 1.4001, 0.6412]
        est_params = tmle._treatment_models[0].params
        npt.assert_allclose(est_params, sas_gi_param, atol=1e-4)

        sas_gs_param = [-1.5670, 0.0150, 0.0201, 1.0277]
        est_params = tmle._treatment_models[1].params
        npt.assert_allclose(est_params, sas_gs_param, atol=1e-4)

        # Linear gs-model
        tmle.exposure_model('W + W_sum')
        tmle.exposure_map_model('A + W + W_sum', distribution='normal', measure='sum')
        tmle.fit(p=0.5, samples=1)

        sas_gi_param = [-1.2043, 1.4001, 0.6412]
        est_params = tmle._treatment_models[0].params
        npt.assert_allclose(est_params, sas_gi_param, atol=1e-4)

        sas_gs_param = [0.18303, 0.01088, 0.00271, 0.53839]
        est_params = tmle._treatment_models[1].params
        npt.assert_allclose(est_params, sas_gs_param, atol=1e-4)

        tmle.exposure_model('W + W_sum')
        tmle.exposure_map_model('A + W + W_sum', distribution='normal', measure='mean')
        tmle.fit(p=0.5, samples=1)
        sas_gs_param = [0.12776, 0.02769, 0.01849, 0.31258]
        est_params = tmle._treatment_models[1].params
        npt.assert_allclose(est_params, sas_gs_param, atol=1e-4)
コード例 #7
0
    def test_procedure_vs_sas(self, r_network):
        sas_params = [-2.3922, 0.8113, 1.0667, 1.5355, 1.2313]

        tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y')

        # Checking Q-model results
        tmle.outcome_model('A + W + A_sum + W_sum', distribution='poisson')
        est_params = tmle._outcome_model.params
        npt.assert_allclose(sas_params, est_params, atol=1e-4)

        # Checking g-model denominator
        est_gi_param = [-1.2043, 1.4001, 0.6412]
        est_gs1_param = [-1.8720, 0.1960, 0.0815, 1.6364]
        est_gs2_param = [-2.7908, -0.2574, -0.1038, 1.7206, -0.2127]
        tmle.exposure_model('W + W_sum')
        tmle.exposure_map_model('A + W + W_sum', distribution=None)
        tmle.fit(p=0.5, samples=10)
        est_params = tmle._treatment_models[0].params
        npt.assert_allclose(est_params, est_gi_param, atol=1e-4)
        est_params = tmle._treatment_models[1].params
        npt.assert_allclose(est_params, est_gs1_param, atol=1e-4)
        est_params = tmle._treatment_models[2].params
        npt.assert_allclose(est_params, est_gs2_param, atol=1e-4)
コード例 #8
0
                results.loc[i, 'var_' + str(p)] = stmle.conditional_se**2
                results.loc[i, 'lcl_' + str(p)] = stmle.conditional_ci[0]
                results.loc[i, 'ucl_' + str(p)] = stmle.conditional_ci[1]
            except:
                results.loc[i, 'bias_' + str(p)] = np.nan
                results.loc[i, 'var_' + str(p)] = np.nan
                results.loc[i, 'lcl_' + str(p)] = np.nan
                results.loc[i, 'ucl_' + str(p)] = np.nan

    else:
        # Network TMLE
        ntmle = NetworkTMLE(H,
                            exposure=exposure,
                            outcome=outcome,
                            degree_restrict=degree_restrict)
        ntmle.exposure_model(gin_model)
        ntmle.exposure_map_model(gsn_model,
                                 measure=measure_gs,
                                 distribution=distribution_gs)
        ntmle.outcome_model(qn_model)
        for p in prop_treated:  # loops through all treatment plans
            try:
                if shift:
                    z = odds_to_probability(np.exp(log_odds + p))
                    ntmle.fit(p=z, bound=0.01)
                else:
                    ntmle.fit(p=p, bound=0.01)
                results.loc[i, 'bias_' +
                            str(p)] = ntmle.marginal_outcome - truth[p]
                results.loc[i, 'var_' + str(p)] = ntmle.conditional_variance
                results.loc[i, 'lcl_' + str(p)] = ntmle.conditional_ci[0]
コード例 #9
0
df['NETID_split'] = df['Net_str'].str.split()

G = nx.DiGraph()
G.add_nodes_from(df['IDs'])

# Adding edges
for i, c in zip(df['IDs'], df['NETID_split']):
    if type(c) is list:
        for j in c:
            G.add_edge(i, int(j[1:]))

# Adding attributes
for node in G.nodes():
    G.nodes[node]['W'] = np.int(df.loc[df['IDs'] == node, 'W1'])
    G.nodes[node]['A'] = np.int(df.loc[df['IDs'] == node, 'A'])
    G.nodes[node]['Y'] = np.int(df.loc[df['IDs'] == node, 'Y'])

tmle = NetworkTMLE(network=G, exposure='A', outcome='Y', verbose=True)
tmle.exposure_model('W + W_sum')
tmle.exposure_map_model('A + W + W_sum', measure=None, distribution=None)
tmle.outcome_model('A + A_sum + W + W_sum')
tmle.fit(p=0.35, samples=1000, bound=0.005)
tmle.summary(decimal=6)

tmle = NetworkTMLE(network=G, exposure='A', outcome='Y', verbose=True)
tmle.exposure_model('W + W_sum')
tmle.exposure_map_model('A + W + W_sum', measure=None, distribution=None)
tmle.outcome_model('A + A_sum + W + W_sum')
tmle.fit(p=0.65, samples=1000, bound=0.005)
tmle.summary(decimal=6)